Modeling snow#
R.A. Collenteur, University of Graz / Eawag, November 2021
In this notebook it is shown how to account for snowfall and smowmelt on groundwater recharge and groundwater levels, using a degree-day snow model. This notebook is work in progress and will be extended in the future.
[1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.signal import fftconvolve
import pastas as ps
ps.set_log_level("ERROR")
ps.show_versions()
Python version: 3.10.12
NumPy version: 1.23.5
Pandas version: 2.0.3
SciPy version: 1.11.1
Matplotlib version: 3.7.2
Numba version: 0.57.1
LMfit version: 1.2.2
Latexify version: Not Installed
Pastas version: 1.1.0
1. Load data#
In this notebook we will look at some data for a well near Heby, Sweden. All the meteorological data is taken from the E-OBS database. As can be observed from the temperature time series, the temparature regularly drops below zero in winter. Given this observation, we may expect precipitation to (partially) fall as snow during these periods.
[2]:
head = pd.read_csv("data/heby_head.csv", index_col=0, parse_dates=True).squeeze()
evap = pd.read_csv("data/heby_evap.csv", index_col=0, parse_dates=True).squeeze()
prec = pd.read_csv("data/heby_prec.csv", index_col=0, parse_dates=True).squeeze()
temp = pd.read_csv("data/heby_temp.csv", index_col=0, parse_dates=True).squeeze()
ps.plots.series(head=head, stresses=[prec, evap, temp]);

2. Make a simple model#
First we create a simple model with precipitation and potential evaporation as input, using the non-linear FlexModel
to compute the recharge flux. We not not yet take snowfall into account, and thus assume all precipitation occurs as snowfall. The model is calibrated and the results are visualized for inspection.
[3]:
# Settings
tmin = "1985" # Needs warmup
tmax = "2010"
[4]:
ml1 = ps.Model(head)
sm1 = ps.RechargeModel(
prec, evap, recharge=ps.rch.FlexModel(), rfunc=ps.Gamma(), name="rch"
)
ml1.add_stressmodel(sm1)
# As the evaporation used is a very rough estimation, vary k_v
ml1.set_parameter("rch_kv", vary=True)
# Solve the Pastas model in two steps
ml1.solve(tmin=tmin, tmax=tmax, noise=False, fit_constant=False, report=False)
ml1.set_parameter("rch_srmax", vary=False)
ml1.solve(tmin=tmin, tmax=tmax, noise=True, fit_constant=False, initial=False)
ml1.plot(figsize=(10, 3));
Fit report Head Fit Statistics
===================================================
nfev 44 EVP 50.72
nobs 590 R2 0.51
noise True RMSE 0.12
tmin 1985-01-01 00:00:00 AIC -3286.93
tmax 2010-01-01 00:00:00 BIC -3256.27
freq D Obj 1.10
warmup 3650 days 00:00:00 ___
solver LeastSquares Interp. No
Parameters (7 optimized)
===================================================
optimal stderr initial vary
rch_A 2.879375 ±17.44% 0.567641 True
rch_n 0.569413 ±3.45% 2.522391 True
rch_a 769.097528 ±28.03% 79.332435 True
rch_srmax 133.482701 ±nan 133.482701 False
rch_lp 0.250000 ±nan 0.250000 False
rch_ks 0.784156 ±7.06% 207.280418 True
rch_gamma 0.510672 ±14.76% 0.404587 True
rch_kv 0.703780 ±4.00% 0.889225 True
rch_simax 2.000000 ±nan 2.000000 False
constant_d 77.083916 ±nan 0.000000 False
noise_alpha 94.804408 ±7.02% 1.000000 True

The model fit with the data is not too bad, but we are clearly missing the highs and lows of the observed groundwater levels. This could have many causes, but in this case we may suspect that the occurence of snowfall and melt impacts the results.
3. Account for snowfall and snow melt#
A second model is now created that accounts for snowfall and melt through a degree-day snow model (see e.g., Kavetski & Kuczera (2007). To run the model we add the keyword snow=True
to the FlexModel
and provide a time series of mean daily temperature to the RechargeModel
. The temperature time series is used to split the precipitation into snowfall and rainfall.
[5]:
ml2 = ps.Model(head)
sm2 = ps.RechargeModel(
prec,
evap,
recharge=ps.rch.FlexModel(snow=True),
rfunc=ps.Gamma(),
name="rch",
temp=temp,
)
ml2.add_stressmodel(sm2)
# As the evaporation used is a very rough estimation, vary k_v
ml2.set_parameter("rch_kv", vary=True)
# Solve the Pastas model in two steps
ml2.solve(tmin=tmin, tmax=tmax, noise=False, fit_constant=False, report=False)
ml2.set_parameter("rch_srmax", vary=False)
ml2.solve(tmin=tmin, tmax=tmax, noise=True, fit_constant=False, initial=False)
Fit report Head Fit Statistics
===================================================
nfev 33 EVP 59.77
nobs 590 R2 0.60
noise True RMSE 0.11
tmin 1985-01-01 00:00:00 AIC -3378.05
tmax 2010-01-01 00:00:00 BIC -3338.63
freq D Obj 0.93
warmup 3650 days 00:00:00 ___
solver LeastSquares Interp. No
Parameters (9 optimized)
===================================================
optimal stderr initial vary
rch_A 1.117071 ±7.40% 1.036110 True
rch_n 1.234812 ±1.45% 1.086034 True
rch_a 193.739953 ±8.00% 268.205486 True
rch_srmax 17.932229 ±nan 17.932229 False
rch_lp 0.250000 ±nan 0.250000 False
rch_ks 12.195025 ±5.70% 49.851369 True
rch_gamma 4.609062 ±10.45% 5.705883 True
rch_kv 1.324237 ±5.80% 1.134200 True
rch_simax 2.000000 ±nan 2.000000 False
rch_tt 1.299998 ±12.42% 2.097848 True
rch_k 1.874149 ±8.96% 2.094073 True
constant_d 77.970383 ±nan 0.000000 False
noise_alpha 97.392227 ±6.53% 1.000000 True
Compare results#
From the fit_report
we can already observe that the model fit improved quite a bit. We can also visualize the results to see how the model improved.
[6]:
ax = ml2.plot(figsize=(10, 3))
ml1.simulate().plot(ax=ax)
plt.legend(
[
"Observations",
"Model w Snow NSE={:.2f}".format(ml2.stats.nse()),
"Model w/o Snow NSE={:.2f}".format(ml1.stats.nse()),
],
ncol=3,
)
[6]:
<matplotlib.legend.Legend at 0x7f88306a9570>

Extract the water balance (States & Fluxes)#
[7]:
df = ml2.stressmodels["rch"].get_water_balance(
ml2.get_parameters("rch"), tmin=tmin, tmax=tmax
)
df.plot(subplots=True, figsize=(10, 10));

References#
Kavetski, D. and Kuczera, G. (2007). Model smoothing strategies to remove microscale discontinuities and spurious secondary optima in objective functions in hydrological calibration. Water Resources Research, 43(3).