{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Threshold non-linearities\n", "*Developed by Ruben Caljé*\n", "\n", "This notebook compares two different options in Pastas for modeling threshold non-linear groundwater systems. We start with a basic model that contains a `StressModel2` to model the influence of precipitation and evaporation on groundwater head.\n", "\n", "**Warning:** No noise model has been used in the models presented in this notebook. This might lead to wrong estimates of the parameter uncertainties." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "\n", "import pastas as ps\n", "\n", "ps.set_log_level(\"WARNING\")\n", "ps.show_versions()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ml = ps.io.load(\"data_notebook_8/B28H1804_2.pas\")\n", "# the model is already solved, but we solve it again to be certain\n", "ml.del_noisemodel()\n", "ml.solve(report=False)\n", "# and we plot the results\n", "ml.plots.results();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## ThresholdTransform\n", "We can add a ThresholdTransform to model a threshold above which the groundwater reaction is damped. This transform is applied after the simulation is calculated. Therefore it can be added to any model. It adds two extra parameters: the level above and the factor by which the groundwater levels are damped. It is very effective for simulating the selected groundwater series. The $R^2$ value increases from 89% to 98%. We can see that the fit with the observations is much better, for both low and high measurement values." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ml.add_transform(ps.ThresholdTransform())\n", "ml.solve(report=False)\n", "ml.plots.results();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## TarsoModel\n", "We can also model this series using a TarsoModel. Tarso stands for Threshold AutoRegressive Self-exciting Open-loop. The simulation is calculated by two exponential response functions, where the second response function becomes active when the simulation reaches a certain threshold-value.\n", "\n", "Compared to the ThresholdTransform the simulation is not only damped above the threshold, but also the response time is changed above the threshold. A large drawback of the TarsoModel however is that it only allows the Exponential response function and it cannot be combined with other model elements (stressmodels, constant or transform). Therefore, all those other elements are removed from the model." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sm = ml.stressmodels[\"recharge\"]\n", "prec = sm.stress[0].series\n", "evap = sm.stress[1].series\n", "\n", "# delete all the stressmodels, the constant and the transform\n", "ml.del_stressmodel(\"recharge\")\n", "ml.del_constant()\n", "ml.del_transform()\n", "\n", "# then add a TarsoModel\n", "sm = ps.TarsoModel(prec, evap, ml.oseries.series)\n", "ml.add_stressmodel(sm)\n", "\n", "# and solve and plot the results again\n", "ml.solve(report=False)\n", "ml.plots.results();" ] }, { "attachments": { "image.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAANwAAADlCAYAAAA4L5nkAAAgAElEQVR4Aex9B3gUx92+4hI7/lzy/eP0xEmcOHHFvQAGUyXU73SS7qSTTr0LRG8GjI0LtsFgeu+9995EryogiiQQRUIS6u10ReX9P+/szenAGBzzkcige57V7M7O7s6Ofu+8vzIz64S7/GtoaLA/wWKxoLGxURwbjUbU1taCefJXV1cHs9ksDquqqmS2PWV5+eN96uvrwbs1oFGkRlOtSJlXazahrqEe1vo6kVdWUW4/J8uXlpeJPJPFbD/Ha3ldeWWFyKupNYq02lhjL3PsxHGMmzAeiT2649lnn8UzzzyDtm3bYuzYsbh8+bKsIvg+/DnWWx5XV1fby7Xs3D8t4HS3X1UCTqZWqxXcHH9SMGWeyWSSuyItKysT4OIBASlBy+sIEAKGwCBQeEywnMvKxKo1q9GnX190dXHG/3v6V3jiqSfh9DMntHm/LcIiwrFw8SJkZmfZgWSps4p9CUjeS27HU05A4+cLpwd+hgcffgiP/OJRca+nnnoK//jHP/Db3/4Wjz32GB5++GEMHz7c3nGwrrK+ji91s3ZwPN+yf2+2wF0HnASTZC6mjoAjwzkCrKKiAhKclZWV9n02f0FBwXX/BbKkBIfZahHgmDZjOh5/8gk8+cunBDjebf0eBg/5EJ98OgJfjfoavv5+4twv/ucxAZhHH/sFhgwbagdWZXUVqmqq7cd79+8TYCVQH3v8f/DU//4S/jotRo/5Bhs2bcSBAwewZs0aTJw4ETqdDk5OTiAIO3bsKOoq3+W6ihPIjY3XvfeN51uO780WuOuAkwJHtYpCRjWQPwJRgpHHBNqFCxewbNkyhIeHo1WrVmjdujVcXV3Rpk0b9O7dGxs2bBDXOKpokoEIEhfXbgIQ7T5oj7HjvhXsxfyrBfm4VlyE/MIC5OVfxfqNG7Bk2VJMmDQRL778En7+6CP4y9/+iqzz2YItJVMm9eqJnz34gAAu1cfNW7cg59JFFJUUg4xHNbWwsBCzZ8/Grl27kJOTg5SUFLzxxhuC7Vh/qRrX1NSI92cbyM7n3hSplre6VQvcdcDJh5PJHO0WyWpkOzLZoEGDBDuQIR544AGxTxWNx08++SR+9atf4Te/+Q3+8Ic/YOfOneK2tJckOAL0gYKJfvv73+F8zgWcPntGqJZnzp0VTESbq+BaIchgBCBTgo+q56w5swXbkcHIaATxxyM+EXl/f+4f2J28xw5U3vtkxikB1n0H9iMvL0+AjOn58+dx5coVYbMRbFQvt23bJupK4BFs3BztVtk+Len90QL/McCR6Rx7dgoef5s2bcIjjzwigEXHw6JFiwSgMjIyxDky3siRI/H666+Lcn/605/wxBNPwN/fX6ibvAttMap8v//jH/DN2DGgM2TRksXYvnOHYDYyFwG2dfs25F7NE0z30cfDsWPXTly6clkwFe/xwEMPCvts3Yb1Qu185q9/AR0kZLLDR48I4BK0ZLj0UyfFfajWEmSXLl0SQOvRoweysrIwYcIE0VHo9XrxnvJ9HcXKsT0c81v2790W+I8Ajj26VC3ZlLKHHzNmDH72s58JsNHDR8GlnUbmunbtmmADsl9ubi6KioowZ84cdOvWTTAdvYNkwuUrV+Dp3/wa77dvJ1Q/gougILioQtIpQkYjcD4cOkTsFxZdQ0paKkrKSgWIqCoWl5bgg44d8Nobr+N3f/g9/vTMn4VtxzK85+XcK4LlCDQyHFXLs5nnROfw2WefCaY7ffo0UlNTwc5i1KhRgo3ZOXwfsBxV6ntXxFrezLEF7jrgqDJS4CTI+HDmscd/6KGH8PTTT2PdunUCVGQJ2kRpaWn44IMPhG1Eu+748eOYNGkSyCYXL17EV199JUD64osvCrA9+4+/4w9/+qNwjpw6nYEreblCVaTdRnc+gSFZjueoZtKTybxtO7YLJiTgyGxkypdeeRkvt3oF2RfOC9BSjSQTUgUlexKwvLaiqhJXr17FmTNnkJ+fj6NHjwqw0V5bsGAB/vrXv4p6lpeXX+coYns4Oo4c/yEt+/d2C9wx4G4nONJZQKGTP4KN19E2e/7554WzgTZQaWmpYDkyXXFxMXgNmY62EUFHjyAdE7yWdpy3tzdoY/35L8/goZ8/LBwhBAnVRx9fjQAJgXKrjeXJiBJMEVGRoCq5c/cuMK63dv06TJ0+TTDaxcuXRErWI8MJpsvJEZ0E6z9r1ixkZmaKOp46dUoA7tFHHxVAZJ0dbViyW0lJiWySlvQ+aYE7BhydH9wc1SOqjxQw6ZF0bEvm0cuYnZ0tev9hw4aBoBw/fjyWLl2KIUOGiGt5fvv27fDz88PZs2fBWBwFeurUqUKo6YQguzA2Rlc9PY5kHKqQBAYZi2rgrcDGcyxLBsw4cxoMLZABjxw7KpiM58iSBBbvTRWVbMeUgBMMmJ8vGJkdA1XKnj174ty5czhx4oToUOj0IXPzR5bn+7NtWn73ZwvcMeBubDYKFVUmCTay1I02DAVu5syZAnDffPONCAeQGaQNRxVt7969AlgUZDIfN6qTPEcBpk1HNY4AO3r8mADGhYs5Agip6WmgaknA3A5wBBgBRGeKBKtUSXk/4fovuibOE8Asw5QbbUMCnyEN2p4HDx4Uthw7nNDQUPzlL3/Bq6++Kryw7JSkHXszB8qN7dhyfG+2wB0DzjEm9n2sJu03npfl6W3kkKh33nlHqFp0jFAt27hxI06ePInRo0cLdZIgI1tQlSR4yXwEHdmNG8FBYKSdTBcAkKohU3oTbwc4MhaBw7IMEZC5CECyHq/lfQlGpvJekjn5DNqYrEdCQoLoJAi+adOmCU+qcOosX/4dyaEt2sJy32mW+yLjjgHHXpuAkqBybDUKFpmJP6qE8kdbhk4RGSDesmWLUMeoThJwBBk9fbyW19FTKYHGPLIe1TZ6M8liEgxUI6kCUj0kGKgKSpB8X8rr6QAhaAk8XkfA0U5jyntRnaSjhfcmMAk4lucmmZZ1pMPnyy+/FMxNVXLKlCnCOcT35nmpTlP9JuBuZH7ZPi3pvdsCdwy4mzUNwSfVJ56X9h2Fk84EOjxiY2Px+9//Xtg5DA+QvWgDEUwUXDIey/KYACTDcZ9qJBmQZckmZCV6DslMBB5BQdbiRgB+H9BkPr2VvJaAIlsSpCdSUwTg6EwhqAg4gpLn6aFkeV5P4KWnpwt1kmpuu3bt8Otf/1oMZJZMznZwbAu5z1SOQrlZG7bk3ZstcMeAu7GXlgJF0JGN6G1cuXIlAgICRPyMPf/Pf/5zREZG4n//93/FuEPGsaRnksAi4MgIFGICj/Ydwcb7Magsy1LYCQI6LwgCeiepCjIlWKRaKMF1s5Sg5LUELq8heMlutN2YT6ARWExpv1G9JJjJhGREMi/rlpiYKN6FavJLL72E3/3udwgKChJjLGnbUe2UP9pwN7abPNeS3tstcMeAc2weurkl4OjC55jIxx9/HA8++CDc3d0RFRUl4mm0ych2VB8ZKCbACCSqiWQ6CqcEG/MIMKqP0qlCAJL9yHZS8AkEqRYSIAxsSya6GdBknozbkRkJXIKU4KMqSTDzXixL9ZL3Yzk+h+d4zDrl5JxHp06d0Lr1u+I9W7V6Ge3bt8dvfvO0UC+ffPJxMUomKam7KM8JReyQpGPJsQ1b9u/tFvhBgKNw0HUv1STZJPS8Oc5B48h9DoFS+ahFAJnTWDh6n3PTqIqRPaRgU2ApuFLwm3MqwUzQSVATbATjtWLG8BgUz0Xu1UsoLS9BUUkByivLkF+Yi1OnT2L5yiUIMujx2OOPwOkBJ3Ts3B4ZZxhqUGKT7KTYxtJ72QJEKWH3XnpbwN3un8+xjFTLmHJ0PUdqcK5YcIhBODTIQFIFk6CivSTtIpnXXFMJLNaPKiRBRgDS2cLtwkWqs9m4WkAmvIAz505h4+Z1AmwlZbT3sgUgzVYjTqQexdejRyrA+5kThn40xM50UjOQ9i6PJQDvPbG7f9/otoD7vn86HRY8x9H69NxxgifB1rd/PyGItIc4Yl96+MhozKNTgixBwaUwN1egyXqxrqwnOw4CjSwnz7EjyTqfiaKSazhzjp7RXGRmn8PnIz/DidTjOJ/DcZ35Ij2XdRZlFaWiDMu2bddGtBdVbwkyiqEMF1CbuF1nd/+K7U/3zW8LOPlqdOU7qpRUgfgjkDifrNVrrwq7h84GCiQ9hgQbB/vymMJK24iswGsIRuZJ4W2uKUElRpTYgEaVWLIeHSkE1aUrjN1dxaEjB1FTWy3Sz774VKiXa9atxuSpk5B7lcFyhiAyhRoaERWOp3/zK4SFhd0UWFThW373Xgv8YMCx5yXoJNBkU/zjn8+BEz7JcpxzNmfeXGGnEVDcKJRSFeOIEE4IlSrmT4XhWF++A+tLlpYMzXwCifYYGazaWCUYLufSBQGukxnpqKqpRPYFzlhg58LQRapgP2oDL7z0PH75y1/aHU2yTdnGLV5M2Rr3VvqDAcfXvlHFGTdunGA3ziujMFIoHVmMahgFlA4TCikZj6qkZDmmzZXZHOslOwYCjPkScNwnuIymGhSXFgm1kiolWY4pAUYgKnbeBQz6cKBwpoRFhOLV11vhL397Bs8995yQKGnD8YAd2/ep8veW+N1/b/NvAU42j+yBGUfz8lajorIaixYvxfkLFzFq9BgcO56C9JMZuJJ7FXlXC8SWfT4HGafP4uSp0+L4XGY2Cq/dfuiVo+D/N/bZaVAFplrJjR2KBCDPKY6THBFOIBCpJjOkQNWaziGWZYfDY3pwGVTneiqcLMtFjTimlD9HO85RdZdt3pLeGy1wW8DR9S9/FAqqOgxK88cg9muvvymAtnTZCgGwEylpMNaakZKajukzZqGktBxnzmaCgAsLj0R+wTVcyLmE3Lx8AdT/Boj+nWfSSULmZnyOgKPThyDjRiCRsQcOHiSARHAx6M48nuM2c/YszJg1UwCRo1p69EwCl4GgStlvQH/ZtHZnCZlOgs+x7e0FW3Z+0i1wW8Dx7ThahD8KAr2T/LEXdnNzwx//9Azea90OGaczUVxSgSVLVyIr+yKu5BYgN68QX4wchUuXr6KktBLpJ89g1Ohv8dbbrfGv51/GxUvKCA7G8mjvUVDJDhRMqqLcyBgUXI7ykKM+yCwUfqYEA0HAlOcZyKbqR5uSKe9LVmJ5HksbjDFBHvM63ofH0olD4PBezGed6ACS7DXqm9FiST7eTwbHyYASZJzaw6X5WF+GS5hPRwtnoHMFsd/87rdiGQcu8aAsMiGas+XPfdICPwhwbAt6zSTYpL3BmdkPPPgI/vzMs3D62cMYMHAIPvv8K1y+ki9Aln3+Eo4dT8Oq1evx9jtt8NQvOfLiIfzt2X/CpZuHYMKr+YXgdBoKN8HAESISGHLUB1mDgGAZCjeBwX0KNVOWp2CzPO1EAobeUXmO4OP1ZCWWI8MxlYAjcAgggkwGt+ng4eJCXOGL5QgOPpedAcHH/F17dovOQHou+TyqjnwPhksIPtq32gCdABnXtOQyfVzxSy5+dJ/IWctr2lrgtoAjk4kRJUajuITGvHSeMD1zNhtvvPmuANIf/8QlBR7Co794QgDsT3/+mzh+8qlf4e//eB7DP/4Ma9dtEnmxcd1BsFH1XLBooRBqgonCSuEn8xBQBAdTCikBwTIEFoWfzEbgECQEBYHJfeZJgPEa3otg430dz5H5eG9uvE7aXRwxEx4ZIdQ+qn7cuM5Jz9690KtPb7FQ0dCPhok1T4YM/QiDBg9Bn779MXDQh0jq2Rvde/REx05d8NQv/x+cnB7AO++2xuw584QKXVZeKcBLALcw3P2Hw9sCjgCTwVg2j+MId7PZioZGoLSsSqiRixYvx8gvR+PrUWPRp+9AjBs/GZu37MC5zAsoK1cWV6Xq+YvHnsT77TqiusYs7DkyDIFGwSdAuDDQnr3JQi0kKMgoZC0OKiaLUE0k00imkkAlEMd8OxYrV68Ss7cJUgLp2/HjRL5cGoHl5HqVPE9A8l5cuYvApSo4fuIEsU6KITREMBlXAeNIGg8vTxFz/J8nHhceWgLqwYd+jj/88c9o07adcCIRgARY8t79qDUpC9RWVtXAbFFWimab8ZjnWn73VwvcFnCOzSHBRtVSspzsqZmazOQGpec21tbBYgWsdcrx8RMnca2oHKfPcGmFh/GLx57C1m27hMeSQk71jMCierb/4AGhZhIYBAOBQiDS68cyZCKqjFwx+cChgwKMBM7b775jX8586fJlAnQEkgQV7zXis0/FcgwE+Oq1ayBtMrIlQcb7kz2nz5whmG3i5En2d6ItKd+PKZdkqKo2orqm6ZsGzK+rV751wH2Cy2Ktx6mMM/ZrrXVN7eTYvi37934L3BZwjoFu2m6c4dynTx/hNOHSkmS3Pn0HIS39DOobgPSTZ+2CJYWzuKQS//zXyzh56hwKCkvx0MOP4cmnnsaWrTtRUFgklkigWkkQEBRkLDpSkvftxZp1a4UqSJDRFqONR8FnGakS8hqupPzL//e/Yn2Tf73wvADLxs2bBHgIoK9HjxJleB95PRmV9+M3BViG96ENSNXUuZuLAC9Bz8HX/CgIWZdsLIBk+4AI9wko+a5ksRqjyX7M/GEffQxnF1fhsZXlmLYw3L0PsBvf8LaA4wUEnXRR9+/fH76+vnY1c/acBWj16lu4kJMLs6URf/3bP5GVfUkIXHWNBXX1QI3RipLSKtSaFMFs174zHnjwUUyZOlOECaSqR8BxlSyqhAQUGY2gkA4NshWXtWMsi04LHtNWW7Ziud3emrdgvvAGcgQMbS/aWrwPbTg5FYcf+aCKKO284Z98LBhWqqv8dgCvHTzkQ/tsCDIsgUzQEyysJzsE7rPTYUpP7MZN23DxUh4qKo0w1lpRY7SgX//BQsVmGYu1UXRMJrPSFjf+Q1qO7+0WuC3g6DShoHC5BKb9BwwSjg7Zqw8a/BHmL1hqE7gqZJxWvkaTmnYae5IPinyqleUVRqFi8h579x0WauWvnv6dWIKOw53ILhcv5whwHE85JpwbHBRMdfBK3mWbaz9LrCHJERwEJe06DpamHfXIo49h0+atoLpGpo2MihH5f/rzX0Q6dNhwXLqcK1TYa0UlgoUYH2RMkM8or6gSbBsXnyjKR0XHwmS2invxngzYf/b5SHF/BvTbte+AMWPHKW1jqRdAmjR5Olq3aY/jJ9JRa1LsNb4vbVgCjeplVbXCfjK9t8Wr5e1ubAEnToa8flOKUFC4UXgrjQro+BkOK4Wm1gLuy628qum4qLQGVwvL8dqbbTBn/jJ7GZa11AN1jYDRDHz+5Vg8+vhT+NWvn8bv/vBrjJ84DqvXrhBjEzmthWMUOdWlb/8+OJuZgcrqCmRfOCcGCWedP4u4hFjBQg///FG4e6hEPWWdyR5kFwp+x07Owiv60MO/ECGMQH0I5sxdiL37DuHsufM4ciINC5cuQ2RsApx+9pDYlq1ai2qTVbyrfMcqY739XY6nnsGLr7yFU2eyRR6/Asdy33w7CROnzhD7prpGkdLGY73444CBysqW78LZmuO+TG4POJswEWTXSitA4eJWXmMWaVmlWQhWcZkR1bUNAkydnT3h5umLypo6cY5p2qkssZmsTUBdsnyN+LTUE089ht/94bcCQK+8+jL69u+F5SuXoaKqVAwCNpqqxFjFK3kX8eXXIxWgPUJwOAm1lAJdWaUwB9VaHlOFlQA8lZGJ8ROm4sWXXhPOmp8/8jgef4Iu+4fx8C8eh9ODP8cLr7yG1es3oaCoXHQM1oametZagCpjIyprGsT75F+rQsbZS2KfbVFtroeJnYmtQ5IgZco6kNlo/8r4JSVNjia5L6XuPn5pB8Bd3wpSWCk0loZGmOsVdpOAY0oh43kJIrIXmev9D5yxK/mwPT89IxtvvtMOiUn9RXkyHa8z1wFU7+YtmKu42B9wEqso/88Tj4nxhr/+7dPgSsgc7MuPKhJg3J785RP4fOQXws5jPamyVlWb8cXI0Th0+IQQcjpqeiT1BVOWyc27JliwtKxaqL0bNm7D7j0HkJZxFjXmOtGZOL7LuexL2LnnAByZjeevXC0Tdec+36Ok0mTvhNgmzOdGhqy1NgjHCLWEm/1aQHezVrm3824LuFprHTZv34G//+tFIZwUqtKqWnio/bDnwBGUVpiwZftefPHVt4LdhLDVNghhlMCimjlr7hIwJXNI5iNACQY6S2gn0Qnx4ZBhUGt8hB1FcD3w4MMCjBwkTQdIVvYFEUPjGE3akQsXLRP3INg6dHTGiZRTAoAMPyT17GdXNQm+YEOEAKbsTMg8EiB8L7I461xdWwdPlR+CQiLFeTJcda3Ssch32rJ9P2bOWSzAZrQ2ilR2QHMWLEZYVCyu5DeFEe5tMWp5ux/aAt/rNJFCWVpZI1StYR9/jrLKWiFYQz7+DG7eGrFPgfX2CRB2mxTekvJawV48zr9WYRdqHkvGIPAIONqEE6dOw6W8guvKiWuLikVejdkiWIh5LM+U25IVqxEXnyQAl9i9N0aNVpwYrHt+gbLsA/cZ/1P7aLF9R7Ioy7yr+cUibkigkb3lPZnuSj6IN99pi8zzl0GwFRRVYtCQz7ByzVZUVNeLvICgKETG9BBtUFxRA0ujolLy+qi4RHR19RD35CBtPk96efmPaWG2Hyqe91652wKOAkSVSwpkasY5+OtDMHDox6ixKDaNwgoNgu1kOaa06ZgSgEwJsIpqK6hi0qajKpp14Qpeef0tnEg7DaOlyTFRUW0Wz01JPwNLg6K+HT6einUbt4GdAO9XY6oX9hED7gyySzuOAs6NYQiGJLgvVUuGKcrKa0QePafjJk0Vqh/ZraisUtQpN78Ys+YuEkzH55zJvIRX32iLolLlPchur735vngPAVh2HvTkWhuFKjljznycPJMp6hgQGCQ8oRQdjthxHBrnOILn3hOtlje6WQvcFnB5BSX44qsxQngofKkZWRg24kshYBQyab/1HzQcz7/0hihHlVEyG1VOXie3E2ln0cXFC/0GfmTPKyqtEvu0my7nFdsFffa8xYiKTQLBV1hchXYdumLo8C9EWamWEkxksJyLeQJEVBMJsqLiCnEsR7oQfDwnwUib7pMRI+Gh0qCkotpeF1lPwb4NTZ1Gdk6BYDeez7lchP2H0gSLsw34aY7aOmDrrr3CFsy8oDhUkg8cxr+ef1HMimDjixCLw1jUllndNxPJezvvtoArrTDi/MU8O7Bop0iPXGmVWeSTyQi2dRt32AV34Ief4J3WHcR5Cq8U5PjufeHqobGzIVU2ntu+6wDo3Zw0dY5Q2ciaLLdq7RZh8y1Zvg6dunpg38ET9nvxOoLLW+WHMWMn2oeWcdTLBx26YsXKdQJgDMAfO84QgYud3Qi8/gOGYO/BI+J+lUbF60r7TXooK2ssYl+GPYrLTCgoUsDJMlQ1CThuZ7IvotWb72Lh0hX2+n0zbiLGT1CGhlGM5KgdppzV3fK7/1pAAI5DtExyIC3tKptrnexAoaYQSsBIATNammwWshyZi/E1go8OknYdXLBj90G7zVZjUuJSKennRBkCikCU9+vZdyjebdsFl/JKRV55dT227TqESqPikPjsy3HoP3iEvTzz+TyqkmvXbRaBdcleHGqm1QXb2Yz5AwYOxeAPh4NeSlmOqXwvpoydsYMZP2k6snNy7ecYV9y0dS/+9eKbSp0bAaqVf/rLP5GZk4fKWiuOpJzEu+93wPlLTdfxnvJZ959otbzxzVrAyWLhLG4r6jigVkpHIzBh4lRs2LjVzmwUnvmLViImsbcQejovCBZHgb1wSXF8qH31CAyOFMLJ8+cv5gvhlDE75hEs/3zhNezZfwI1ZiD7YiFKKizCKcL7yvtzv6KmQdhxRWUmVJuU55rqFKZ1tNsYGmAcLio6AePGT7EPJaM6SSfKxUtXUVGpBPFp93Gf7vuKGpPdcTJ2/BShusqgNlmM9T197jL2HkgRXkwefzjsC/hqDfYOgPZbTq7y/us2bcWJ9AxxnWzSmzV+S9791wJOdTRAbFJh4Wj/BuDc2fPo0tUNs2YvEEJzraRaOD5Wr9uKzdv3CwAQCAQIhc9xoy3HoPfhYycFk5HF6CRZs36bKEe2INjIiGPHTxMCW21uRGVtvQJkql42MOcWln0nzsXn1liAC1cK8UEXN8ycNV9Un3acFG6CkM4RecyUsxccjwuvlYljx7rTGfPthKn4cNgI5F8rE7YjzzNeKMMBsvyJtEzhmRXtUGlEWbUSj6Pj5a//+BcWLFkuOgn5zPtPtFre+GYt4GSssaCm2iyARgmsNVqREJ8EP3+9EEipCkpBo4DRjc6UG50XBJR098+YvQjjJ820s5u8TrKfPJZpyqlMXCurEfeqMNbZ71tcUYv4pH4Ii04EAclnMU/ujxw9Hq+/8z7oaJFCTVARaHSOkNXIeFSLmcdjluvZq7+Iz/Ecy8uwB+sjQw5VRqu9E2EHMWrMJNSY6BVVOhfpraT39VjaGXudWUc6YDo5u+LU2SxxP1m3mzV+S9791wJOdmnlGMnKWkELZaXV4NpBVDHZswtbyRarogr4zxffRG5BFajWubipodIECgGVzgYJJpnSrf5Sq7cFq/F+0nO598Bx/O2fL2L7voMoq7WgytqAmnrADGD3oaN4+a13sTV5P/JKyrFu20508fAW5worqpFyJhMMUfB+ch6eHM4lGY5DuqJjEu0zGSj8AwcNw9ejvhWvTfXz869GI9AQZh8fKtlM3NcKoRp7qrQoKVeGsPGdWIaB8NFjJ6N1+y5CleRQNyoLPC/DFgxntADu/gPVrd5YAI4sR8morDDaJcRoVGw6MlzO5ULQLU5h6t3/I8Qm9hO9+sXcErzyWmsk7z8mzrGsBJ2018h8tOc0/sECaDKMQO/k1aIKzF20DNV1jeDc5xu3fcdScLW0QuSPnjgFqzdvu64MGYXPo1BnZl3EsuVr7ALOvPiEnggLj7kuT6q6a74AACAASURBVAKAjEcP55Ydu+2eSr4fwyDSq0oHSvuO3YTtynPseCTwyqvqhEd16qwF1zGcHLTMYV3F5U3jOW/1T2g5d/+0gJ3hjDVWTBg/FdcKy4QEV1VZUVxcjQOH0/H2ex2Rm18uBvAeT8sWAlZRo6iUHHlBYWRAm4DTG6IwfMRXIo/gIhjp7qfDhYJ85WoJJBjLa6ziXpWWOgGkq6Xl+PybsVi7dTvKas12cJWbLKgwW8VxUVUNrlVWi30Cjs+mejh02Ai4uauEmigdIxx9kpKaAWmvEWwEGcc2SuDx+m27kpFXqIxq4THDAbThuJ95Plc4jq4WVor6N3UoVsGurIMAPsF6rRSTps3E2ewcO2PK59w/ItXyprdqAScKBG2cTZt3iNH02ecvK3aQbbR8RHR3hEbEi96dAkj7TdpwVCmZRxajCsZ9usqPpZwW+zLGRluH+7T3GJ9bvmqjOC8FtcpaLwB0pagEv//bP3Aq+4IdbGQ9eZ7pkE+/wJtt26HWwUtqNDdAF2DAoqWrBJBYDwa+CXCGDXhMkDHl+7IjYMrjtRu24vmXX8XufQdFWECUtZ3jPjuRnn0G45XX3hXvSDtu2swFGDr8S9EmEnDmBoDOpRdfeQOnz12wP6sFcLcSv/vvnBOBwi0kPEZ46ChkFOBaSyPSz2ShfWcX7D9ywq42Ga1NDpM5C5eLfI6ykNum7clgQFyWo11DoaTWShXytbfb4nTWJbvzQznXYCvTgBVrN9uf5SjMvP/VojK0+aAr5i9ZYX+uLEPQc5/2FR0Z306YLp7Bd2N+bn4pVq3fKkAoj5leKSjGR5+OBAHDY25fj50Ad5WvmHZDj+krb7wjVF/G21iu3+BhmDZ7oSjbp9/HyLlUivpGYNKkeXB11Qjbl/ZvrdG2oAvlyo68m88/bM6ix+FocpPBe9aXI2ccpxxxKUU5TpSBfZ5v+V3fAk4UZAqZTOU8N44mWbluE8JjEsR5ur1lGZaPT+qDNh90BtVCCqFUD8uqLaK8FF6mEnwE0ydfjLY/LyQyHtIGkqNXWJ4u/76DPgI9mBKwEhD0VLIMvZUFJVUi8MxjXi+fQzAk9hpgry/DC+Ex3eHm7YcqU4MdXOwEeC1nPzDlVlJpxO79h7F6wxZxTMCdu3AZBSUV9nCFLDtz3hK88VZHFJdaca2wFhpNCBYuXHtdPFMAjW1+I+AabXdh/k/gx3GfEkAckuY4DpRfrZU/uXapPG5Jr28BJ06eZM9NoeO+FKYK4/XAYRmeqzLViVEVb7dpL6bnyPJMC0ur7ddfzCvC0lUbkHXxqu26BgEICcwvRo1Du07dxNhMMiKvl+Dq6qaCt2+gYEoC5KNPv8LBY+l2ULMs56F9O2kGPv1yjB0IReVGcR/HjkHWb97ildfVj/mM/TkCXZZlyo5HtseNbcH7swPo6OyBiKhegt0Yv1yzZgcqKurvKcBxdTayG39MHWc9ME8CzxF0zHdkQnFxyx/RAk4Urh3JB+xA4bFkE+5zRoAM6krBu5hXiNjuva67RuWnt6tZvG7JyvVCfSRLKfdpui+ZZcyEaZgxV5lPxvPcCLhd+44IQR717WSRR8C9+V57HDp+UgBQBsVZXu0fhIzMi6IcGYxxO0ewkQUl690IrBuP2ZHwngQZpx/tPXRMHDNvwtSZuJxfZJ/lzrz84nKERiVg6/ZDMFPNpvbI0EpVvRJSoeZoZzXHfZtKKRjO5r35iQijZDhZXQmygoICkeUIRoKzZXC2bKmm1IkDbLt5eCuOBZuzYPinX2DQ0OFiyJN0IjAonFtQdF05eY6B4n/862UcPJIi7L+rhaVQaXTo3W+wsAVlOaYc+c9Uevu4X1jcNGcuNqEn4hJ7CVtMXsf7cp9OkUlTZ6GkXJmewzw6Ro4cT0f7js7iPO1PMW+vEbhw6aq4jtN4WJYufw7d4nkeT542G3we97nRpc8R/s88+xwKisuEp5Ezwt9u/b6YfMsyHApWWFJuHwomnEWNwOLF65GXVwZ+p7K6WrHdyHrfr1JK4DX9M5rjnlwaggCSH3EhkOS6pFxcij/mSVbjNTK/Ob7Tf7NOTj7+AVi5doMQOAZsL18tRJdu7hg/eZrI4zwxCppWb8CwTz4Tvb6czkJh5Dm60aVnjs6WVWs34dU33r1u0DNBsnHLThw43DTa/3hqBg4fSxPlKLj0HuZczrcDgvfi/blxbGOr198RXkWZJ1M6fLSBIfayzE/efwR//utzOJOZI/I5GJlgDQwOF6BnnV091Jg2a644L+NnB4+eEJNHZeeyfvM2fNDZ2T4KhXMDI2LisTN5v/15l/NK8eab7ZCVdUVxmPA/6jCQQPyD7WwngSbT/+a///bPpk0mVUqWXrFihV2NvHbtGvbv34/09PTvsFnLF1xv3rZOElAM1FJQj6akIyg0QvTkUqCZfvzZSBEk5j4niqaeOoM27TuCbEbPIPMlQL7+Zjymzpgr2E7eg1N8Xnj5dTGburzKJK5xdvXCyK/H2gX3WkmlYJzismr7tWRCsuKQjz4Vg4od2ZDMxWMuhzB67ETIeXVkMD9dMBKT+gomlfXjZFfO4pZ1+uvfnxeMJkeGMJ8hj7IqoyjD9+zdfxA+GvG5yJfluKoX24t14+yIhUtW4+2326Gy0oJ62xjOBnp/qZtLp4gEnD39aQBOqpFkraNHj+LLL78UgCODBQcHIycnB87OznbpclQr5bX2ky07cKKQ0SahcFFt5HAkCh3zmcdNCqjMlynzhUplYyGqc8zbsn2PmEMnBZ0A4P60mfMgwcZjss2l3EI7uM5mXcSAwR+BgJPPZEp2eva5FwWIZb6896atu9DFxeM6NqUq+da772PrjmRxHz5TXseUHQPV4OWr1wngyHOcEyc7HubxPUd88ZUAoOyY5Ox3mbIcVd7jxzNEUJ144jJ91VUcG+cgYXagSXvupwG4oqIinD9/HqmpqWjVqpXd7c88fh8wMzMTp0+fxsCBAx1eVvmK63UZLQeiBUTg+zuyIGWiGaQciHyr7b9ddwnWG+txHdjY1DcWcDxuRsJI9VHaX6NHj8Z7772HTZs24ZtvvkFQUJCoKT2TI0aMwGuvvYaVK1eKcMGjjz4qzjle34xeq9lUpQVwt8GCIy5utv+9gLvxX3yzi2XejWX/S8fSESK9i66urli7dq34NuDEiRMxZ84cUTOCatu2bfjss8/sYQJ3d3dkZGTY7T0GvmXI4L/0Os3ysd+7xMIPrq0UmruU0tN3q+2WzPFD6vSDX/S7BXn7ewVwBJH0QsrRIo8//rjdGzly5EgBPjpRGA4YPnw4du/ebW+U3r17CxuPGdJb2bKMhL157Dt3Djje6ocIdnMsY2+GH7cjX4mgk/sy/c4d5Ymbpd8p/J/LIND4o1NEOjkIuNzcXPz5z3+222zjxo3DmDFj7BV77rnnwPgby1IFVavVwlspWU3ey35By45ogf8bwN2njalgh44ifu/t+u07TXIj0OgzkXnfKfyfyyDQCDoJPD6ZDHXgwAH069fP7u6nCskvJ8nzDz74IEpLS+0M+Mgjj4BhAsmOdLa0/L7bAi2A+26b/OCcewFwBJoECV+cAKQtd+TIEeGZlI3BcvRKSnVx48aNwobj+YMHD0Kv18uiAojyXvbMlh3RAi2AuwNBaAIc10uRm8J0TV8ksj1AsplMmwnDsXYSRNwn4Pij/UXnCTeqibTb1q9fj+XLlwsVkvnSycJ4HH8EpQx4y3PiRMsfewvYvi1gP7btsNEZnePm+GM+RzxyU/4xtxUsCpj9x2vkZs9s2pHC6HiNfZ/XsT4ymPwD72O/vukx/yd7tvtKoH33nmwjLhYhN9tUHV7nuH33wv94jvRKEjAScKyEI2jk/tChQ+31Y96lS5cECMmSvF7abgyAy2vsF7TswEkRCJsQS0EQgl3DELEiHJRtIWAU+HI0NJYAcvAtOJaOSzNYFSzRgyCxyn2Bi0bUWY1oaGBZKYBWNNTbZoKKe9ueYbumsb4BdVYzrCbbcslgfSqV6+tNSt1E/XhBkxDX13FdTcWzeXPBlkBVwCtfWdpg9nspd1XwzdEjdUADqyvfiam4mA+z2N7T9r7ifVjfEo4U5XRYDgNXGkY+UN7/J5DKuBwBxZ/0Pkqg/gReodlUsQlwUg5Fm1IYKSBmWGobhKARRI11BCCFqFKRaEakJYC4y3tQEOXGY+Zz5eW6WtTX857s+W3CbhdagEOhuGRfHeXXIb+JEM1AoxH1pmpYjZVotFQDjSYYa6qESiRkwfYs+czrUnuTs1KyR3BcOo/7PGers628xWRFHRfGVarcBCxijH0HK852kO/MVNyGky9LUddQAEtdPkyWMtSJl1Puz/o6qnK2xzW7xJHxWLmSkhLBgj+Fuje7xgTIcDZ2o5DY5K1JIG15zKcwowEN9SZYzDWo45gueQ1vYWOAOq6GXNsAU00dTJwbYwNBQ129uIakJoWT1xBkHGHPVcK4sI/ZXHudYPI6cQ8p0A7PVOrLDIkGWxPbnmkfrS/qLptflldAZytqs8F4Tr6rLG9LeUoWbmhEQ12j0hE51kued2gYu8DKc1waoq5BvKfJpIy0v+FJzepQslhVVZWo17Jly0QqWa9ZVfYnUBnFaUJhsPfMrDWF0UHAeF4KUQNgNXHjmCugjishm4EGqcaJctJ+kWymXE5Vz1prYzGbeuYghzbXOtVG27r7Ytl1k8J4rBIXOJH15FolPBbOChPqG/gFVD7PBhoW5boH8gHiheQfllE2qUoqqTzflEo1StxHXMOK8Dm2zkTBrXI70U7MaJC3b6qvOCfv2yAcEbW1pMjm/3Ocxc3ZAlKllPPgmv8bNJ8aKkO7KJdkKSGf/LyTWZFTm7yarRYYTSWwUqWkwFOmiDfbvrRrFJWMa/dT7SxCI0qFairy2bNbFbBaCFDKq10Tq4Ol0YTahlIYcQGmhssw19WIDy4KyWU9CGguxGpW7lHLVcKqjKiovIZqYyHMVk7zpwBLkDdc5+6+vsmbANeEjOtLyCMa/+K9xX15f6qK/LBkiVATRbuxHcRPQZ/AFomZMwbI3EbAaKpFXSO/982l1hVVlsyuAFle3zxTOkToDCGrLViwwF5Je2dkz2nZuV0L3ARwBIztgxcESQNXLOb31PiBwxpYaUrZHW7K0uhy2bl68PO+/JhFFhrA5fQuwVSfDwuUD8uTcOjUsFD9tK2iVdtYCQttHRShDnmox3nU4yJqGwtQY1KWIycwyYwW+mbswk3BJxOSESUr1sBaVw1rHVU1G9N8bwtI0NnK2ZlQ5ssLecxOqApWcCm9EjSgmHO+0YgiNMAiQt5KJ8WOimEBh+FootNiXikaUSje01xXZR+u1twBV1ZWJhtCsDLjb3IImP1Ey84PboGmwcs2NqMQcaNcczM3VqDSegFVDSdRhwKx3BztLXMjZ10rH7qgyNajFFachwVHUYt9MGIfqnEcxcZTqKorFKMxlHKEApcS5/onJbDgCozIRDVSUI1jMCENdTiHOnCpuSJYGxualjAQhEDhJ3Py/Fk0IE84J+g9JfBMlhLUGEvR0Cg8GrdpCILpZoBrcqbUNVhhbaiCuSEfxsaLMDdegRkX0QB+cDELdchFnQBiOeqhzCSXbccRKMaGQtQiG2acgBFHUWXhV4ZKRcdhd8TcppbN4TRjcaNGjYKLi4uY/8ahXy2Ok3//P9MEOLswc4LmRZvwmFFam4nlW0di2rIEZObbVrICUFZ3GbXIgUWAphAl1iM4W7wIBzI/xZpD3TF/UySmroxFbsVelFjIdmQyfkOgFBbkoQ5ZsCAdl6o24dil6Vh9sD9mbYzCwi0DkXxqKq6atgvQVVkqYazj57II8BLUIw/FpgM4eWkidh0bgQ3bxyHjXDLMdXS/K0xH9bLWVIk6ET64VaMo7CXVVoVtCECCWtH2LHVcEoLz88jcF1DdeAZncjdiy8EvsWBDH1iRBjMybe9EpuYKYFwUiZ1RHnKK1yM57Wus3tkT+1JHo8KcqqiV/JZ4xXUm560q+l87x0A2wUZwZWVlgdNwOnTo0MJyP/I/4tQAK4wm5RO8VCXnrRqG/OpdMImeuxAFxv2Yta478qwLMX5xuABNLcwwIws1OIwKHMLGo19g4fZYLNgVjG0ZMdiYHoFl+ww4VzEDU5d3x6HMpbAgF2ZchgVnYMZRnMgdi0W7IzB5rT+OF4zErqw+WLAnCCevTcam4yOwL3MsanAcFhShzEqAXhDCnZw+Fkt3xmLpbhWyK77GojXDcDZ7v4gPSsApdpYVxloC8FY/B8Bxl5tgPJsNK5i7DjMWjIERp0V9TMjA3oxpSD71BY5fGY3FuxJRi4Mw44ywP83IRVlDBlIuLcKyHT2xYGsg0gtGYNnOCCzZ0guNuCgAdzWvSlGPhcF3qzr+d89JBwmD2ARdjx49kJaWJqbltAS2//3/jVNpxTXh3VMM+VJcLtuEL6doYUQGLDiHw+cnY9neeJyt+hIbTvRGysX1KG3MwtmyJSjAEuzOHI6Fe0IweX1X7LuSgDx8jrFr3sTKI4HYnTUIqflTsHLfJ6jCMVTjCAoa12DnuUGYv1uFFcc02Hg2BHuuxGP+AU/M2u2F9akJSL02FhtTPoQJB2BGBorqD+NQ1hQs3JaA1YfisPyAFudNfTFvmxsOpc9EUek5O+AaQPe14jyx0GNxyx/ZzKZ62gFHp4vyDTlFNazDlr1LsXbPl6jFIViQipP5c7FgeyjOVY3G1A1+KMAKGHEQ1xp2IadqPZYn98e6o/HYfjoGmVVDsfN0DLafGIDL5fwiaz4s9ZWoqjYJp9Etq9cMT3Jkifw5ei9lXkt66xZwstTTQWJGjYnfxKbKdgJLtiRhT9oYWHAQF2pmYFGyDguS3bAmxYATV6cLW2RDej8sP2bAxjNROGUcgoUHnDFr7/sYv/EVXMCHWJOqxcSN3bA1YwCSL4yECTux7exQLN4XjHWnDDh8LRJTdr6O5WldsCSlK7bmBGNZii8mb+mMPZf6Yc6OKNRgG9KKxmPejgjM3RqB02VjsfpYIJYdccPsne9i04kwlJuP2FXJuoYKWKwEnOKprBdBv+9rACKMgKPzxbYoCxEmAKgwvgI4K2qRiyVbBuHElYmw4DDOlM7E9E3u2J0Th7GruyEPC2DEFixOjsaKw+HYdi4aSw87Y25yG8zf3QUr9hpwsWwl6nEZ1aZ8oa4r3krbs7+vis0sv8Vmu/N/iBNjV9aGWpis1bAKZ8kJFDeuxsz1YajGepRgDmbu6IqlR7ti8VE3nDONwWnjOMzb74uZyS44VpGEqTtbY8qOt7DkRCck5+tRii8xbWc7rEzVYv2paKxJjUENVmDmThXGrGmL4+VJ2JDpiZWnO2Lmgdcw+8i7KME32JRlwNSdH2DBITVWpSSgGIux7Jg/vln5Do7kD8H+ywMwa6czxq99FxvSQlCEpUJFU0bF1AqwWay2IVT4IWEBAtNWntgTgCO7KV5aHlaa+fWePBzKHo/Jq7UwYQ+O5n2NZUfUWJHqjSVHA3EZ07D/6mBM3eaCVene2H1ZiyXHWmPq1jcwaU0nZJbNRh0uwtRYBqOJX9ShjVgunEZK53Dn/8i7dQc5k4B2HIP4VCMZDG8B349rcbvThB41OkDqcQr7z47EmkOJOHh5MEyYh2nb2mFTtjfmHXkfORiOpWlqzNjXBYtTPLH4uCtWnVJh8fFumH+4CzZla1GNCVh/zg/Td3fEshQfpBs/xPqzwViZrsXCI+5Yka7C0hQ3zD30Plad64KlpzuhFN9izdlALDzujsUpahwtH4r0mmGYuudNrD3TDZvOBWPZsUBM3uyGBbtDhReUaq/isTQLryTjZY1NcQPwc8p278d17SP1RxvgxJAXG+EJdZLhDQV/NfWVKG88iz1nPsWEVZ7Iq1+CtOJRWJnijh2X/TH7gBfyMBmTd3XEylNuWH22MxafaIMtWSosOqDCxdpFsCALVlSj0rbkINu6ypRrqzvr0Px/EnhycDJr3BKH+/f/bw6Ao4DRVX8Gy/f0wuI9eszd5QYTZmHG7naYe7g1ph98DacaY7E62xkzDr6PuUedsTs/BuvOBGLJcRXmHnDFpG3voxCjMGn7e1ie5oFxW15HDoaKlCBbdMwNi495Y21GkALak12wIO0DHKnqgU05YZh90AUrM/yw62okFqV2xowDL2BhyhuYtvst7LgQi02nBuCSZQtKGrJR2VAOo7UaFqsR16mPNhej4+eUm5pGqpLSfuOYTNsHFpglYo4K4HhIjyOdIKsP9cKS/cHYlDYAuZiOmXvfwdrMLpi5vzO2XIrAghMdMT/lPcw8+DK2XFQJdj90eSSqcQpldQWoNisrOytqKvsBqq2MI4qHNlWvGe5JsLFqjsvgOcbommG1m2WVnBhUZlxN+QihGeX1aciumI+Jq7tg1o5OSCnrg0VHXLDweDvMT30Ly86+gaXn3sKkva9jUao71p4Nxez9GmRjDCZtd8W6sxE4UT0IM/Z3wOI0Zyw91Rljtz2PxekdMftwe8zc3xV7rvbCpG0qXMIkzD/eDRP2vI3V53yxKz8OE7Z3wYLj3phz9D1M2f8cFqS3wqR9z2LrZQ9M3dkZp8uXwIgSMUehtoFL3nFsok1opS//Zqm9+b8HcIrZZwOc8r1wCTgLLuBAzggsPRiIGZsDcab2a0zZ9RJmHH4B63PU+HzdvzAv9R3MS3sDSzPaY0OmDmtO9EItTqG8vgjllqZPKfNzV1x6kKHwWnPzH0vJZpPtS3bjJsdXynx707bs3LYFnGi3EHTc6kX86AKqsAsrDoUKO2Vlmg8WHeuG+cc7YObRNzFh79+wMrstJu59E9P3uWLG9mAUYg0qsRl7r3yMRYeCMP+ICitPqzDz0LtYlN4Wy890wIwD72FZqgfm7ddg/r5wnK2aizJswsHiQZi0sz0Wp3hj+8UITN3hjKUnvDH38OtYffYdLDrxBlacbI8p217FscIhMIq4FwMTyhqatvmSyovagMbRLHZVUoLP3hQ3ARydLJJ6bnCaVJNBGU8zLsbsbQFYcjAaK1OCMffIW1h65m1M3PU6Nub4YmFqO0zf+yaWp3hh9i4tzDiOalwW/MXqVBu5MKytrSnEfB7r9hP53Ti/zT4o+ydS/+ZSTSdKhJjKJiYNVMKKbNRgH642zsPCfRpM29UFi1LcMPtQB0zd/y6Wne6GlZkqzDrcDdN2anHJuBMWXBbu+6yqRVh8IAyz97li6UlnoWJ9u/NZzDr8Flae9MK8fT6Yuz0SJwto15xHScMhlGMl1qaEYuF+b6w67oO1qQRke0zf/jL2XtFg9bHOmLGpLTKuDUcjdsCMk6gyXVaM9u+A6Yc2a5MN19hIryYdJ8qsCavZAjNpk+OPbSYgVe1qZOBE7jTM3xWC2cmuWJHRAUvS38U3G17AyjQVtmeFY/pmV2xO6Ytq7IEJZ9CAMljMtUp8j/fjzAg6Jn90vX/o+11fjmCRtpe0uwiYnyJDCbv8+tcTR3L2guM7yXe9SfH/WpYTO3Qr48NccdlSLMZC1uIY8uvWIDlrGNalxGDK1m4Ys649lhzTYtXJSEzY4oG5+w3INi6HCQUwWTmsKR+1SMXB7FGYt0uLucnOWHS0iwgVrErXYO3xMKw5lIT0y/NRh/O2sYX5KK7bhqM5X2Dl3iis2h+C1Ye0WLzLDasPeWNnugGbj4YgOa0PqurX8wsDsDScV8ZQNjTCVEXKuJO2I/cQATUwGovRUG+GpcassJ1tZgI/xcyQCQP3ORWbsGRPLCZs7IB5h97HwqPtsTbdH5tPxmDmOg02HRqAa8bNALKaJp3KQaMMCdYBpiqOwgbqrXVigu2d1P7fuVbaXlIIpYCyes15o+blqMVwhgXz+CP4OD+Pv5+KmuvkECdGeRE/O0T75SIKynch7fwszFgRhRmrwrH24CBh2xU1bhaB39TcBajCKRG3MlVWo85SAkv9RaRnLsHCDb0wc5UB8zcbkFE4Bnnm+cjMn4NT5xeivDoFVkseKkvzYKzmAOCLKLXux/rkTzFndTzmr4/FpgN9caVyFgpqFuDomW+Qk78cVmSgpiYLFaX5IlRmLgeqOZGaZPWjf7yYo0qMsFqrUMcR0vxnNgB5OYXgGOiaciPMFoYJilDVeBxbjg7D4r16rE31E7HJQsxBYd0KpJ6fjLzSDaKeVdUZsJqvwVhRBLZNaW4xTBU2INvU3caGOtsshDt6gdu+Odf9j4qKQmhoKCIiIhAWFiY2rVaLuLg4hIaGN/stODgE4eGRop46XaBIIyOj4e+vQ0pKimgDdiSOrC07lts20H+4gBPY81YA51Mu4PV/vow2r78M185vws31FXh4vYDY+E4wRL4Hd/VzaN/1j+js+nd4+LwGL83b8PR6H++//jbatnoXXdu2gWvnd9GpwwtwdXsevoGtoNY9Bzf1MwgIeRX64Heg9X8PgX6doHJpD/cPPoCfuyvatH0BLp6vw9n9Jaj8X4PW8Aa0Ia2gNbyEji6/hVrzMlTqN+Cv6QRvN2doXH3h280Any5RSIoafseAM5kJJtKZzWvSCKQdTYFLBxd0bNMRft4adPqgDdq2ex5tOv4OvqHPYtoKHTYcjcLn099HR88n0E31NwSFtYZLt+fRueOLUHt9gG4dW0Pj7gr3Ti7w6abC7CmzlbqK3pkgk0PP7i7gunfvLr5wc+zYMSQnJ4vl7zg0a+/evdi3bx8OHTrSrLcDBw5h7979OHjwMLi/a9cekfJ406YtYmEjiRnGBhkv5E+m8lxzSZ3EIHt2viUWuLbpiBC1GvFBAdCruyFY44IAVUf4eraDTtUZ4YHeiA3RIS5Uj4gAHQK9VAhX6xHrG4LEgBCEqX0Q4N4NsQY/dI/SIcCnE/y82sPHrR0iAjzRIywAYT6eCHZ3R6Rag1AfHwRpfaHx8URosC/CQzWIi9Ghd69gxEVrlX5UEwAAIABJREFU0CMhEN1j9AgL9EWIfwBC/EIRE9ATwV4JCPbshdHDZ90h4KRGSqGvQ3lZERqtFmSkpMDb2RWh2iBo3DwRFqBFUlww9IHt4eP3PD7+0hOL1kZh/Aw9fNRvwE/dFXHhOmg8ukDn7YZ+CfGI0QcjWO2HOEMkAlR+mDJuAsw1Rphqa8SgaiX4TeG4u4DTaDQCaATcrl27BNC4T8Dt2aMILwW5uW779x/E7t3J2LfvgAAeAcf95OR9WLly9XXz86hWShtOqpjNBWiyHk6oofEGWIsroO3mjl5h4ehhCEGoSoUEvR49DAZ0DzagT0Q0kgyRCPXWIsRLh2i/EET5GpDgH4JEv2AMCI/BkJhE9AuPxoCYePSPjkO0NlCkoSoN4gICMTA6Gj0C9ehtCMGA8DCEq1SICQqF2t0TodpABPv6weDviwi9Dv4ebogLMUDr7gmtmxoGtR56zyCEqqMR5BGNAOdwDIz/+I7llYQjtsZ6sXQEPUjnM9Lh080FEdoAxAaFIiogAFGBvogIdEekoQt6JHZFQkJraP1aIT4kAIkhcQj09EeULgyxunBE+gUhKTQGPp27IdRXB62HCnMmT1Hifbbl9Kwww2hlLO7uAi4mJkYsQU6QHTpEYFFYkwXg+Pmp5go0WS8yMMFF4DGP+2Q3psuWrcD8+fOlLAuwyQHVzXUkjBMaabfUoqLgEgK8uqFneAiSQoMRo9WiV0gIojV+SNAFoZchHNEaLXw7uiDYTYUY30Dou3nA4OaOwK6dEKVWoVdwEOL8/BHurUaEyhdBHt6I1+rFcYinJ8K9PBGt8Ub3QF8k6X0RrfFEv5hoJIaGIt5gQIxeL4Q7OjAQ3JIiomDw9kGErxZJoVGI0QUjRheCBH0UYrVhGJTY5/8McHQiVFWWAg0mpB1JRoCXG5LCQhEfGIzEoBBEaHwR6N4Neq+uCPHthOigjugTo0VCYCTifRMQ5h6KviE9EecXBr2LD3qHRCHKT4eYgAAEq9WY+u0Y1FaViyC9yVILcwM/dKlMVrVLzF3Yoc1GJiPI+PFEfg9gy5YtImUeGaM5b1Qnd+zYJeq4Z89e7Ny5WzDdtm07MHfufLFEnwSZtOPYjJLp7kKT3tEtndCoTNwsLjgPlesHCNWqkGjQC8CFeHihhz5YACvM01vsJwYGokdQEJJCQhDlr0FPQyDitWr0DNGhT1gwYvzUiPX3RU+DAUnBwWD5YYmJ6B1qQJi3O6L9vBCpoUrphj7hgdB7uCAhKADhPj6ICwhArE4n9smyVFFjtDpEaDRIDApCpJ8PQlSeiPRTIUanxuCkOBtr/Lg2EP4R29ISyh0Ur+Wpo8kI8HZGtNYHgS6u6BkcJlRmdjgDo2IwODYasVpvhHl7YmBYH4R2C8UAQ1/01ndHpEcAErUGxPlp0ScsDOEaFUJ8VZg5cRysJoYglG/o8Un/iVCct7c3tm/fLpjt8OHDwm7jSsknTpwQX8AhczTn7ejR40KFJKsdPnxUsBvzCL5Fi5YIG87RXpPOEgnCHycZd+8qJw4xqkcVysoL0LVrO4QE+iNM649InQ6R/v5CnUwMChYgi9f7I1avQUygGpGBXogMVCFSq0akvwZR/mpE+Xsrm9YLUbYt0KMzuAV5OiPYywUhKndhx4VpVIjw9UaMvzfidCok6n3RI0gntsRAHeK0WsT4aRDt64MojbcQ8BCvLojQOCNG64LYAGd8NijO5uz4cQ1EwIkvlkrXs1g7wohzaQegc+8kQB2v0yHBX494PwNifQyI8dEjWq1DlMoPkd7+SNCEia27JhQJvkHo7svyfojXahCnUyM2wAcGjSfmTpugLMziADhacKzD3fzRO0nnCDcynXSW8Jj7ZJDmvNFe4yadJdKWYydBwHElaP7ooZRg47Hj/t1s33/33k5ckcPCRQLKy9C1a1cYAvXCnorQGRDuH4gwHz+hTkX6+irgClQjKliFqBBvRIf6IlznL2ydCK0WUVpfROlUiNJ5I1rnKbY4vQrxQRrEB/shITgQ3UNCkBgaju6hMegZFolIHy+hWsZqvBBLdvTVIEbjg2gfDaLUPuI4PsAHvcMCkKD3QmKQJ2J0XRGiaot+8bo7ApyIh9lG2ogFkRwB59EBMQEqhHt5I8JLgyjPQMSqDIj3CUWCXzi6ayPQIyBcgCzBNxDdfbUCaN39NEjQqhCv80KczguxgWoYfN0xd9o4G+AUZiPDtQDu9mC/5wDHIVK1jUBRmRVduqgQpIuGwT8CkbpIhPsp9lK8PhQxOj3CtX4I8vOGVuMGjborfLy7Qe+rR7DGAINPEEI0WoRoNCB7hWs8EO7rjrhADeIC/RCnDxQOiLigaMQFJyA2uAcSghMRq9Eh1scXcSoNom1bjMofsWqtOBel1gjwJQRoEeXrifgANboH+SDRoMbIYb3vSKW8DnDCd8HVo6uRmboPOhvgaJPG+QYgThOCWJ8QxKrDEKM2IEYdjBgfLeIFm6nsIEvQeiFe5yG2uAAPxAZ62wA3QRlq4sBwtpDcv9tJ/lvlWxju32quu17YiYAz1QPFZUCXzn4I0cUizD8aUdpIRPmFIshdgyBPH+G8CPX1FS7y8OAARIYFISosFAb/MIT6RSDMLwzhfgZE+lEV9RPqIO25CLU3wtRqhKl9EabWI0QdCoM6AgafWISqI9EzMBq9dAb08NMjUROAeI1eeD2TdKHoqQ9HH0MEkoIMYov08REqJm2rGJ0Gnw7qZ1vT/Ee2E1VJSj3tOBpU5BxHwOnU6K7Xo7suGInaUOEQidGEIEodhAiVv/DkUh0msL6z6bwQE+CFmMCbqZRNdlyLSnlrlrvnGI6zBDiQtrykAa6dfBCujUKEfyjidKGI9dOjb1gU+oQqoYK4wGCEaXUI9PWHv9oPfipfxARHIS4oCglBEUjUh6GHPkQ4V3oGBoFbnMZfYTFNIGI0BkT6hCLCJxxhPlEi7aWPQW9dGHr4BiPRR494TQAS/fRICgxBr6AwwS70dPYJjUSCniGKULAe4Rp/DE7qc8dGkFAlBeD4RwKuyYaLUKsRqfZDlDoQUb5BiPE3IDYgCPFBesQHaxVQBXjYUpVQQ+nQYYcQrfNDTIA/gjVqzJ06yaZScsUyZePqZXc7LNDCcD+yM75LlznJhUyrS03w6OSGqACGBHRI1NEm0SBK5Y5otZdgFoYKGNCNMUQgOiwGcRExioNFOE00wt6K89UgwccPidzU/ujpF4gkX71gMDoV4nz1QnAjNMGI8AkUNpBgNrUWcQSwWqOomH7+iPfXIszbW8TrYnUBiND4i9BAvD5cxLtGDBx252EBG8OJ9f9sgJNOk+gADaL8/IR7P9pPjyh/PaLpTKJ6q/dBlJ7OI5VtU4PlCbJonVYppwtEVABVbh/MnTpZWclWDCXjcnpcwYzrdbICd+/XAri717Y/5s5Owk3W0ABTaTHUXdojPsAbCTo39AxwR09/F/TTe6C33hPdA1TC6xbh5wuDRosAnwAEqn0QoumKcE17RPh0QrSqM2K8XBDn6YZ4Dy8kuKvQR6NDLx8tknz8keijQZzaG1E+HojwcUe42g2xGh8FoL6+EA4HfzXi/b0R6++BGD939AzRCg8m7UC9pweCPFUI9tIgyNsfH/bs/38DOOGulNMmjDiXehA6984CPIkGAxKCQgSrMqYWoeOoF08YtC4I9ndGRKAaEYF+YuRNpC4QkbogRGoNiNSGii1KF4IgjT9mT5OAY7CbS+hxiQWuI6MMRfox/7wfck0L4H5IK/3nyjjJr3BYSwvg27kteuhsQNN1Q2+/zkj0bocE746IVXVBtI8rony8QFsqwkeHCF81EkO80CPUGUkGN/QM9kDvIG/0CdSgX4A/+gXoMCBAL9LeOi2SdD6gUyFO645ofxdE+7siwV+N7jo/9ArSog9jeSH+6GnwQWKgl7CLgj07wKDqKryfoRpPYR+G+/vD4OOLgUl0mtxZYyneSdpwyvAuBr4zUw5D79pVMDw7BDp1Yvz8EK31FTZZbJAK8cEeiDcwNKJGZICfYD2yX4w2EDH+iupJ9ZPBetZVYTiO2ZTsxjVkOI7z3mC4fcmKLfZ/ne7fq4QFdu9UhqHxmGGMA/t+omEBU3UVqE6ZCgoQ5OKM/jp/9PP1Rne3Lujr44ru7p2Q6N4J/QPU6OOvwgCdHwawjMYXEV07w+DRAfHBngjz7QKDqjO6B6uEF3FQbKgIcMf5eyMh0EfE2oI9OiHc1xU+XVojSuuGSH939Aj2Q4hHV0T5uCNM5QyDZ2dE+LmJclFaxcvXJ0aPxBB/6Ly6ICFMh7gQf4TrvDGwV8Kdj0W0fd/A1FAHM1VKWHE8eSdiPVwxyN8XfT08kOjaFUPD9egdpIZvp3eQGOCOvoGe6MPQh68b9J6dRJww2K0zYtXu6KXzxUBDMKI83ZEUGIDAbs5YMXc2LEYuIMQwDFBmrRUKpfDV3Fmfccur7zbDEWDcDuy5O+nB5AMgyJJ37MHB/YfAYz7v0N6DWLzwJxiHq62qFoAzF15DiLMrDO0/QFI3Vwz106C7c0ckdPkAcV3eR6JrZ7H1cOmET/UB6N+tG7p36YTuKjfE+rgg1LUjgpzbordeg8GRAYjyckao2weI83FDD50ngrq2Q4zaGfEadyQFeCGkWwck+rqhh8YDcV5d0UenxkeRekS6doJPm9cQp3IV92N53tfznVYYGmeArktbxPu7I9SjM/pFh9xZWMA287qq1qLMIOfnuBrNyDubju7ubgh94w1EvfUaPvLxQB+1CwLbv4Zo747oF+CJD/09kejSHn0DvBDs0gYx3p0xNMwfUS7tkODWEcHvv41Ez26I93RFhLsrpn31FRpquPZKowjDcJIGt3sBcATb3doIMG4E3OF9CuD4rJ8s4Kz8tEtDHSovXsS3Awbi67hYfG4wYFRoCI7Omo5ru7Zg2SeDEfR2K8wa0BPfRARjkKsLxoeGIGX6NMztlYR+3Trj9JKFmNUrER96uePkwjm4snEd+rt2wdIhg3B4+iR8bdBj8eB+ODRtMnZ9Owrz+/fBYM9u2Dn6a2QtXYhdo77GjlEjMS48FAsH9sGUhFis+Ggw1n76Mab3jEf6wnmY0j0Giz8ciH3TJuAjfx98HB6ifB3kln38rU8K8822GuW1an6kw4yi7AwM1vph3/hvkTl/Lj73U6G/qivWfvsJFnwxCB8GeOLYnMlYMKg3Zg/uhZRV8/F1dDCWffoh0pbMwdioEKwaMRQrPx2OBR9/hG/79MKMLz7nnBFYa5RFZqlIcrtDjfjWLweIeXB3c6SJZLi7lZLduFGlJMNxXzDqvp8ow9GGq6+qQN21Arz8y6fQ080Vq0d8gsaU45jdIx5rPv4QW0d/itR5MzBU5YatI0dgw7AhODNjOr729sbeTz9Dztw5yJ45S6SfOrugzztvY2lCIr711eDMlKnImjkDs8PC8bWXpzi+OG8utg0ZioFt2+Djjp3wYes2GPD2uwh/9ln8f/beA7rt687z1ezuvDPzNrtv5uzZ3ffebvJmksxmNuMUNxVLVqUqSVFi750gQBIA0RsBsIEAiEaCBDupQooS1XvvxbbscXc8sdOcieNeZHWKkj7v3AtBUbLJTCzFmWTP/M/58d8B4t77vb/+ux9t3caoooqyr32dvoJ8bp04iXPBfH62cSPnQ0Fe6u5mq76eWEE+XdWK+BpY/+yw+80PXJ8U6xaIpeducV3ynOu8+fRJLGmpPN3dyV67ld0OM2d6g4RVeby4ZZhDnR6a0pZwsMXJhF3PjhY7o8Y6TElPYljwBOvVKiKFufxg87hsyz69jj2xGEzeQK5McmfhlMvXv1j9Tfzq35dI+a+A+81j7N470y598kF87dxrl9jdHeXK88/x7oF9vDzUx/dHh9E/OYNRnZLX1g8Syk0nsDqV60ePcM7jwT59BtpvfBPX9Bn4FyRR89WvMZyVS2jxEp5yNfFCmxfztx9mMCOT99eN8bK/ncN6E/4FC6n56t8wmpfPzkolOysV/KgzxubSMgx/+xAts57gyubtXN+5C8PffZuu5BRsDz9GcMkSIsuTqfj/vkLz3HkcaG2RXOPeH3Q/x9cmr3Nx8qIsonT98odM/vyH/OzAXn6yYZRNSgU7DRoOtzlozV5K9exvY1k6m90WLZ3pqbzaF2WNogT7vFls0ajYpVfL66/396D89kPYlizCumIFz09MiEXi4oC7PvnFy5J3GuJfAXc/I+KLe2caN8Uii1fhg5/jUyn47NxpTgT9dOdns9dm4PlokNeHuznf4ee1/i62qpW80hnhhz09bKtS8KKnjRMmI7HkFFpmzYQzZ3muqZGNRcWcNJuYKCmF/fvg0GF+1t/HpuIS9taoeK09wHG9Hvbs552+PkILFnFlYoLm6TNxPvwwOyqqOGbQ0/rEbA7Xa6n92tfxL5zPP0Q6OGm3srmykosnjv9OACfiPi5PCYvhdW5d/Yi3nz/HmZ5Otus0vB6N8HSrizPtbo547Wyx1LDTUseJBiOn7GZuH9nHYYuOA3o1b8bC7NfW4n7icQ4adfTlZjNSWU6/spL3Tp6Ezz6Nc7lr15gS4Pui5cl/5XBfHHLu85OnCTP1jQvvwqWPONTXRVteJuPaOp4N+Xgx7ONUo52uzGRsTzwKT5/kgFGDa8bj9CYnM5KZwWhRAR9vHqNxzizeHRvhqNXEueYGzjW5cD7xGM95WznttjGYk8lPR/o4ZNLTk5EqB/Ipl5X3R9fxUqCNaMoKjlkNHDbqGcxNZ0etUr5vmf4Ia0vyuLJ3J7HsNAYLc3g+7OX7/d0cD7c/MOBEbRGhTV28dkEWQ+LmZ/zjsyfZ6jBzztPCWFEePx/pw79iAcH0JeyxqTnjsXNMX8ezDVZOWfU82+LkGbeNn/Z1srEwhxPmemq//lfsM9ZzvMXNibCfH+/fCyLfTtTKu3mDySuXZdnw++y33/q1f47DnTp9lgehLzrT4H+70C5ZIu7GBbj4PgMWHTvcDuqnP4Lib/4a36K5NAlr2//8a57xONF/5xvo/+4bHNTUcnFsjK1lxZz3NbPDUMtgSQ4vdgX4wZpefri2j77CTI4323k23IZx5ncJpC2VNFpdws8n1nH18G7O+hoxPPYt9pm1PO1rwjLzYTrTk2lc8AS9BRmc8zdhmf0o47UVHHZbyP5v/4ndtnpJTcvm4SvKji8w/lsPv1998BYXBde5E2p18/YlmPyEqz94he6yInTffYi2ObNYm7OaXZoqjrmNDBVn8Pa6Pp6xGTlvNaL7H3/NU3fANl6UzWGtivDiueyurWKfUYP5yemsqa9hX0c7fPphfCnX29e5dvUiYrHHL3r7V8B90S38+T5/2tS1D2XALpc+ZOFf/Vcakpeg+LtvSI503GLA/ui3ON/iYH1xFqHl8wkkzWUkKw3PjMc5otPQnpxE/YyHOOAyoPzO13ku6uW4x85oTQmB9KWcCzYxWJ4jr4WzVjBRX8VGTQW6md/ip5uG2eeop31lEh2ZKwinL0M34yHO+F280hfCsXAGr/SH5WdVfedrvDYSxbpwOmOackq/+RWGjHUPDDgRtXztutDfbjB166Jsi7fOHaXiuw8xUVXOXpWC4fRUulctpStjOZG0xWwoyeH73haOq1UcM6rZVFnA5spCdqjKiKYksUerkCLnUGkuhz1O6hfPZUfYC5+8CzcvcfOmyEEU1Zi/+IzvoqIimQcncuGOHTsmM70TGeAi+/v0mXOcPHt/JN5NcKAvai/y3sRni3w4kYQqjgVXFdc3bpz448uHQxRCvXmRa299n5zHH5Iz+6ZaJT8Z7GN9QQ7HjBqe8zgJLJ1LR8oiTjtMvBbysiE/h4bHH6bhyek4Fkxnt1VNX3EGjUtm401dyHBFLsH0pbw1PshPNgzwfJePyRN72aqvpvR//Df22rXyeKQ8l63qSo46jbzY5Zc0XlNKJGM5ptnf5bTPyXZTjdSh9jXo+MH6XrwrF7HLqqZbVf6AgINbckkrYam8gVg5VWQLfPzKeTqL8znjdnHKbGBNZhqnnWaaFszAu/RJCbjQnJk8ZdLx8zW97DXWsLYok/Ul2XywcYRxRSG9uWnsazDwVE8Qb1kuWyNebn/8c5gSYV1XZQ5ifHXwzzdDft6nExxOlFdI1DIRx4JOnz3DCVG24NT9k3hfZF9/USRqlwgSZRYE2MSx+C4BurGx8T9CwHGZGxfegU/e4YUtG/je+jWcD/rpz1jNKz6P1F9GclbzzuggJ50mdqqr+fFgjN21KqKpy2ieN4vDNgPb6hTs0CgZKcpB++2/ZbeulvGqEiaU5aj+9qvsNajlvc2qCvQP/x2vdAbwL5nPaaeVLYoy9mhU9GemsbG8iBcCHqnHvdHTwXhFkfzcf1w3SDQjRYqgzwZa+X5/lKf7og8MOGG4uHFDLCssxLvrTF54l09fe56znWEO2yyctdt4ttHJKxEvhsf+jl16FeNl+fQuS+K0QUtPRrLkzjv11Ry0awmlJbHDoOTvo1522uvpLM9lT9jDz589Jbnb1LVP4tZQpnjv0sdfuOO7pKTkN2Z8nzpzmjNnn+LUufsn8f7vg46fOMVTT5+X3yU469lzT7Nx0+Y/TsAxeYGrP3mDja0uTnUEMc2cQc+qlbweCbBTVUVgyTw+3LKeM61OXu0O8VoszAGznjd7ugguSeKQUcsL/lY4c5yJyhJGi/NYV5jDhtICnmpqYEdNFUM56ZywmyS4xLEg8ewPoxGecTl4Z6gf9df+CtVXv8LPhvp4wdvCaYeF4NKFRFYs5u11g6wtyiG0Iom+rDQJ+kB+9gMbTa5dEZWXhdnkBmJxSm5d5aNX/56Rulp26XSszc3jg9F1POVtZI9NwwZVGe9tXEf7vDnsrCqXE8qoqpjhshzeHOliu17J4UYTg6W5jGoUxFSlRNWVjLa3wNWP4eYVwUuFPVTSFx1pUlhYeFeMFCKlKJUnREpBx0+euG9xMiGGisH/+6Bjoh7lU8/I7xJGHgHy8T9GkXJKlDAWA+HaBepTl1P3xCx+MDIsxanh7Ez8SfMIpSxhj0XLGyN9PN8dkoaA5zpDPBf284PeblqenM2Lfq8017/ga+Oc28lQdiYfbhhloqKMnw72y2can5iJ4/FHuX1wP0dMBt7o6uT1YIDX2v1w+CBnGuxxzpm8nAM6LZ3JyznjdEjLpbBufr+7ky3VlRy3W9hWpyRclPfAgBNgu3r92h196gZc/Yx3nn+G3upqRqsUNM+Zy0fj40xolHx/fR87bXpe7enke+Eg51wN7KhXsdOi4Vx7My/G2vnJ6CAjFQXE8tM50GznbCzCphYH26NhmLoss75v3LzGpZvXZEzlF+0ZEBwuXrskXodSiJV3I09On+LIiZMcPnl/JN4VQPgiSXA2QYcOH+XkqTPyWHyfEGXXrR/7I+Rwd2b1qXd+ypKv/TW+7CwOOBy8EethKDub3Zpayr76ZZqXLqDsm1/jTLiNg21uNLMe5ZXBHt4cHmC7toZ3Nqzj+bAf39JFvN4b5fmgD9sTjxNZuYJzbU0ctpk47DBzwmWnaeGTbK2t5pXOEBsrSqXP6oV2Lz/q7+GMu0G+0zR/Djs0NZz3tfLpzi1M1FQxWJyHf8VirhzcQ3dOOoHi3w3gxKC/MjXJ+5+8B7ev8/H3XsabV8BhVyP+pKUYHn6E075Wtjn0nOsKsstu4qDRwGBONq/EOtiqU0lLquB+P90wzHpFMZu1Kl5fM0C4OJ9utZIT60fg2iW4Jpao+v1lfIvy5qJKl6hJKfQ2UZdSHMsalU8/xemnnubU0/dP4n0h3n3RJAD29DPPyu8R3E1wu00TW/4IASfCdkVtymsX6TMZOBmOcD4UwbMoiSMWMy93hNlt0mNb+CTGhbMZqq1EMeNhaudMZ7CmQkaiOJbMp3F5Eo3Ji3EtXUjOV/87vaUFdBXnUvbNv8GycA5vrB/mnV1buH7qKBeO7OPZrjCvDvVieXIWW3Rqthm09JcU0JmTwXPdEfl9g5UlnI+GeKYrhPLRb3H17DH+Yf0QvVXFmJOeZHeg7YFDu4QOJwEnQty4xY0rn/HuKy+yxdXEmkolp5qaZQiacd5snCmL0cybRe3Mx4imp2ObOZ0Nygp45e95qSuMa94TbFCUsc+sI5qVzsm2Zl4aHqCnRsWpNSNixQm4McXNO+usTd38ovkbCCul4GqChDgpLJOJ8xOnTkqR8sS5c9wvJUTLL2qf0C8FNz3z9DN3RWAB9D9KkZKp63D9KlPvv485r4CuOi2HA53EShX4VmcTK67gqC9I9azZNGbnsCcQRJeaiqesjPUulwx03trSRFSpom7RAgbqdRwIBwlVVNKjrkW7eAmurAx0S5fRkLEac0oqfVo14coqnBmZdCiVtBYW0pCegS1tFRudLmK1dfhKSxm2mMl9/FEMq1ZizkzHmp3J6m8/RMWTcxh1NjDu88ng5cSw/bx7IU5eviQW84DrN+Mm+qkrV/jJ37/AhMePZdlKJswO7EtTiFRVs7mlla46Ne3lFayrN+JKScOTlYU/L4/23Dx6yitpS89kuLaOjuIy6hcm4crKQ7VkBc9u2wViCeRrk7/TKBPxvyd+dzwbV5SKkGqp3KVlZLNr/2F2HjjGtr2H2b7vCDsPxmn7wcNs3nfogWjL3kP8tiS+a8veI3e+L7GPf7/4jPj9X78f37GXbQePyu+a2HuQrfsO09E3yOYt26TE8EdTJo/LU7LU+aW3P8RUWUeb3kFTnQm/toHR1i5K56dRPCeFsZZuPAozipXFZM5bScQVxlhez1pfjEF3AHO+kojBTcXSLNpqzMRsXnJmL6VZYUSxIpvx9j6aqnR0WTwE6xsY9cZQrS5mU896er3daAprWPrIAnIXrKY+T8WQtwd1UQ39kQF6wv2M9KxjsHOIFlMzA74eln53PkF7mxxjwvAgxtjn3ScG6o0bN+VSuhdiv4VkAAAgAElEQVQvfCY/761X35Ql8Prd7RQtSKWtxopyVRFulZmoI4C5REtLrQNrqQZHmQa/1o6n1srmjmHqVpfKUnp+nZsNncNEnH7qCqvZNDgm/8Fb12+SMNQkvl/AI7HyS2JBCnEutnsXQrz32qVLIhQt/pvjhpc7CbSy1F8cdOL6isxihrcdJrbpAF2bD9O7/SixbYfo3ryPnq0H5HFs62Huh3q2HqJ/62GCI5uZ9qd/Qd/WA0Q37CG2aT+RDbvp3LiXnq2H75L4jp4tR+98V2If/27xnLz/K/vebUfo2XaE6Kb99O04hjgXz/VtP4or0s+GzQJwU9K9E48aEu0galSKXx9vQ9FuN25OIWJmr16blHTt+g1E4Pq9RWRFe4vze9cokJ3wO/wjF2QUFvH3fvgOpRlFmKqN9PliJD2chKHUgL5QR0VqOY3qFlx1zVRlq1kbncBS24LP3om+xEBvcwxzmZFh3yBOpQNTqYGKlWXyuDy1lMXfXUSssQt3jZOiZQU01bmpL9BQnFqKy+RDWWliJLaZmmI9bdYIlTm1qEpNZKdXkLqylGhsjI6uMYLhYSLBNWSllGBRunHpmiXSxMC7X0q05ZVLwqARH8Gv//1ruPQu8pJzqS/RUl+iw2sNEHR24Na34bV1YFO3kLOiGGOVFWV+LVXZKorTymk1tZOfWoam3Eybs4NOXz+VxXX0dg5zU2Se3oOyqSlx4Z/fEmu7iSfvrSgsjD1iWN0FnATbjXiOoCgOBSzLLKd/+wkim08Q2nqKjl1nCe84SWTrYTq3H6Vz+3E6t5+8L4puO87gvqeYn1PNtL/8K2aml9G17TixHScR9+Ikjk/Sue30L1Fk+2kE/XPfHd1xCkGhzUfp3nVGHot3unaext4xfA/grnP7lmjP/xVwiRb+dWMkce/3tZ/22cVrXL9yU3K5hd+dQ01aKcrkIlIfXoouX0NvWz/Bpih2gwezvoVQaz8eSxhLhYs2rZ/kx1cQsgZY/thSHAobEXsIXaGWLlcnLZom6nJqKFyaz2h4HX6jV4KuNlvFylkppM1dRXleDYoSLW32MF2tvfS1DdHnH8KuaabNHWHF0lx6+jbw5LyVPPLwPFTlRp787kKCtgh71u9NjLYHbq+pyZvxvpqCl556AZvaRu6KHIaDQ7TbAnjMfmoKNOQml2BWOXFoPVTna+hu6UFTpJWThyKnhpHIGEF3F/oqGyaVE02VmfLCGnZM7It//m0hwV+LL8h4D+DELHxvtWCxYmli0Xpx78KFC/I33vvM1K2b/+KA695+gpVVJr69LIcMdQPRrcdYe/g52tbtplsC758GXAJ4v2nfseMMggKbjxPddU4eS6DuPIu9Y4QNm7fHSyVOiWWjxRQTBxy37ijnYn/PJpfWvnmbqalbCMlGSApiQhNrEYjJTNC9bXzPq7+TwztFhODiOxcoTy+iZGkOPrWLNW2D9DXFaDP58NqDeF2dmDSN9AbWMe/hZRQsr0CRXos2T0Px8kL6WnqoWlUhSZ1bi6e+BXuVVYJxx8A2BMhcqga0+Wo6GyI01roY7Rgl6ukh1BxFX2Emb1k+5lITBcsKsNU4MSitFOZWM+PxhWRllrNueAvlOUr81nbC5iD1BXXx8sV32jjR1p9nP3njJgnjhQTdTXjp/MuUZpYSbe2SYAo6Qqjy1VRmKTEo7BJMbfYOAq4oLXoP2kItrToPYWcHpgobFqWTopUVrE7KpdXWjqqsnpGeUSYvT3Hz2q14/RQ5DsQ//us30fFCvElwNDEI7l2gQoBRfMS/NIcLbTxIbOtR8o0trD18nr7dZ1hz6Fn8Y/t+Kw73m4CWuP6ggJuavMEtUQcygbtf3f9K84t2TgAvIcL/yiMPdDrt9kfX4/HLn1ynXqWjwehmsGuEsd5NtJm8WEvN6PO0dFk6aNe301rvx1zTSFlePTZdG/2+QTLmrpYgqk6vkqKipdwkxUkhPoZtQbb0TEjACfFy4bfmkzU/A1ulha7GLtIXiBr8SuqL6rFVmuh2dKDJUWGtMFNTWItF62LWo/OwGZoItHSwfHYKAbOXgnlZWIp1InP0F6MuMfp+2/0tWV3i7gL3169OSTnsledepbqgmqGOEXQVRvyOoJwAXNpmnPWtFK+uojJbjVXlwlxhoWBJHrqCempyarEpGgjYIhJ4S2ak0KBtQl2uZ33vBq5/Nsmtq2KN3zuzL7fk7HrvjCo6W8y4QpcTHS44XYK73atviOf+EAAnONz6Q+fJMzTTvf2YBFvvrtOsOfwckc1HpDj5T4mU4R2n+acosvMMgtq3HKdz9zl5LJ4XorFNcridcTAJUIlCUKJRBCXaOHGe2N+6HQfg1E0pZYg2Fm2Z4HDiPEHi+u96k2t889ktbl+8yde//Deoaww4TG45SJx1LmozVFQnl5M5fRWZM1eTs6iQBo2HpoYoamUDqxZkSnAI0bEmSyl1t5yFWQTMfoKWdrx6D9/+fx6SYqUyQ0FPUzdlKSU0qxvlQG0ztkpOVZlagrmoHk2GAp+6EX1eHf3eXpSFNXR4ugg1d7BszgpiLV2EjF4yHl3G9q4xKQoL/fh+SFTsSmDzqig/LSox3xAroL5Gk7mVylyF1M+SposVfrRoSw0UplWgLNCiLjETaYyRMT9Tcuum2kap74qlq9x1zThrGhnwjZC7vJCaIg0Htx6OK1VC6hFZ5levS5eGqBaW6HQBsnuNJKKzxT2tVsvHH38s+/5eLveHIFIKjta7/Tg5ukba1u6QIuXwgWfo2n6C0KZDvz/A3RDVoMRk9psBd1u4ZK5PShLHCYAmuJpo63u3LwZw8XQwPv7phyyZtQi3tkFaAZOnL5ecy6FsoM3gJXdJISlPpqPK11GQWklH8yCqAj2GUqPU2YSouGr2SgSo2k0+SpOLJdcThhJVZrXU7XYN7ZC6ndDpBBcUoGvRuMmZvwrVyhKyZyWjSStDvaocR6mOgABjqRqz0kRNcQ1VWeW0qp3YCjV0qJvw1jmlSHnjFtwviZ8voig/uzwVX6z9Fjz/9KvoFEYJcKPCQvKTK9GVm6gvM1KZVYOh0kZpRjWaEiO2CitdDR3UZdbExetlYjVYLTU5asnp6kv0aEp1jPZu4NrHV+OgS6BcLI8rZl5hZ5sS/8kvb5cvX5Zi5Z//+Z/zj//4j/KmGARC7xD3/hAAF5k4zMi+cxRZ2hjaf472sX2MHDwvdbjwxOEvGHBrGd28Oz5RirKiol3vcrIE8OJqnQCaWIF28tKVuHsmAcw77X+vlJHohS8GcOKLb8GFtz/h4b9+iMwnU1n+8ALUmSr0BVr0ZUY81nY6WvtosgZoMQXJT6kgO6kYdYGBsfAo+qJ6aQwRFsoh74DkakJsFOJk2hOp0nopLJdCxxOGFAFKYUApWVFAybJ8HBUGzHm1eJV2KhZmoVxegKvMgKVEy5rQIMEGP8tnL8NnbiVnXhq1KcWMWEP4ap2yrKaIhhQVsO5nf+kGfHr1plxf4eodI9ezT7/CgllLKM4ow98QIuAMSx1TU6LHYw7QqGujrsSApqieDmsYTVYN2hw1muw6bBV2ipYWE2mI0qrzUppWTn25gV2ju+GysJgIDnczPkOIGVUulRUXaxId/aMf/YihoSGUSiXvvvsuf/qnf5q4JRV6MTgE4MRYSWBXduK/gJXSt36PBFyW1kXPzhP07zlLeNMhhg48Q+fWY78HwO2VbSjsJYkao7JhEoASTTx5iw/eeZfXX3mV8yLj4MgxTopQsaPHOLj/AIcOHZLBAK+88ops7y9yueJpssduwc/f+Bn2GhMly3Lx1TfiqWsiZ34mQUcYbbmR/tA6ugMjcplfp7YNc6WLWMsg7UY/wkhSKUzi2mY6HGEJQKHPDXj65DXBzcR5tztK/uJc6TbY1DVOXlIWuvw6WpQ2Oo1teBRW1CklNBRosOTWULY8D1u1iYLkXIZDA3hNLfQ3daJaUUhM20rWE8l4PCEsbX4MTa1onI1onY3om1qxtvlxtIcwt3pRN7hRO1yYWr2YWtqotTupszsxNnuwtvhpDkSxN/mxu/x4PJ0Y611UFtair7ZIHSzk6sSqaqBJ7yF3eTGxtkFKVlURsIckZ2uosEqw1edqaKv3Yi61UJxchqncymD7MIYqMyMda+KAE4wsgRK5ON0vTP1CpBE627Rp03jttdckd5s1axYNDQ2IFVrvFXmEXicAJyUpgeFJUbIhXj361vUrchAKzv1FuwWEDte/8yS5+iapw4lz4RroEP62nafo3HoiTnfcAtHtZxCUMIYEtxyjZ9/T9B04T2jrcVpH9+HbeIiOHafo3nNOnsf2PiWPxX3P2H75XHjbCWqbo2zYfkC2g7A+Xrk6JY/Fn18C3x2u9+qLL/HM2XOcO3VaruP+7FPnOHfmrAx9e+mll9i5cyetra1s3rxZ6tBilru3zcW5EPsTImji/r2cUPTVG2+8ISUWYdgaHh4mNzdX+vbEc3f9cJMfX0NXqaHV2IRVYZTingBR3pJ8shZmoy0ykLk4n/72ddIPFfOupcnQjqncLLmb8KuN+IekeCn8clt7N0twCTeB4GZCvxOGkLHIevat3SNFTsHtBlpi2Mv1lCVlSw7nVdhorTDTXGVBnVVFUXIezcYmvJZWZvzNo1KkzJuzkqDCQZvGhbvZj7k9gC0QwR6O4Ah1Yg2GsPhDGH1+mrp65bm47+7qxt0ZwxIIyvuujm5sbUGMLi/2liAt3ihudwCToRGD2oFOZWXBY0vIWpInXRVtlnbqy8ySww2F1tNqaJOTzYbwemk1bVA4sJbbpA4nxMpwQxRFlpLK7Go2j2yNi5MyC0gYZ4SjbArp/7vLv2DHjh0Eg8G7V3p7e4mJil8Cpzdv3h0I4vyjTz6WgBNRMp988hHPPnUmviDJjWtcvypW/fvDB5zwqXVsO0Zg00H84/uJ7jjBwIGn6dlzhvaNB+R1cT548BlJ3btOyXu9e89iCg6wafdR+TvFb710/fYv5rI79pNrV6e4Iaqj3YZEDda47iYsZlPScHK3se8cGAwGeSQmPwG4hB/0gw8+uPvovcfi4sWLF/nhD3+ITqeTz3z22WcEAgHZn+JYpVJJoP6S0aS6VIm7wUPI20nm8jxMlWZMRQZCOh95s7NQplQx0LaGoCuGRuUmY2U5S2asYLxzTIqKwlonxEbB2YQIKcRK4aMTOpvP0Cb9dIrVldI3J3TEqLMDTV4NMVcHhtxaeu1hxlr76aj3ENJ76G2Mkr88j/QlmaxauBpFlrCC1qHLVhGubSJo8uJsasfUHsIe6sIZjeHq7MUW7sTsj6D3ttMQicn74tweicrnjP4gJl8YWzBKa9cAerePJn83gc5hrHYvBp0bq66JmjK9FKdri+uJtvRIt4DP0k5VZrV0hNtVDdIaK41FqeV02CM0KJz0tPTjqm2iLE2sKqRFXapj59juuEVVyL53xHhREzReYj3ej0KUEQmjQsQR20cffYTT6eTZZ5+9a7UU119//XWE2Pnhxx/x+ps/4pOLlzh4cD//dto0FGVFvPezt+QA+0MHnHBoNw1tI7BxH9HtR+nacYzYrhMM7D9L317hKD9CcNN+OkQ0y519+/heeSyebYiuwds9zGs/eptX3vgpz7/2Jq+98RN+8NbbvPr6D2Tb/Ozt93j1tddlGwpu9srLL3L2zClOHD/K/n175HLMIptCGKU+/fRTCTAxyb311luyDxLWyx/84AdkZGRIeu655xBB4YlNAFNsBQUFkruJYxGz+pWvfIV58+ZJ/XvlypW8//77xAE3GffDCbeArzGAWWMjacYyejy9UlTqtIbRZWkoWFRArGmAUFMvIc8QpblqVLm1UlcTYqMQKYWvbe7/nCP1NHG8NjAifXL9rb3ynnCO5yXlSBJ+uu6mbhqqrRQk5aLPqSFr5kq0wshiDlCbXS3FMY/dh03jwq5pwFxhpsseompxobRyCq5kDcQBZvSGECTAJa4JQAkACtA5wt04O3rksQCnoIZID+6OPkwtQdz+LvyRQZzuIGZjMyZdI1qFBb8rQkW2ks7mGMKxrSs1oC3WkbeiSPrdOpwdUpyuXq2gSdNM3pJClNl10i1QulqBXR23+G4Y2MTU5Ztx0N0RcW5MXpNcS8yOia2+vl6WQkg4vf/sz/5MiiPi/ssvv8yPf/xjXnjhBQnGF156kRdffZ3vvfEmY2Pr+XfTplFZUsAbr73M1csi5egPm8MJwCkaIzT1b5DhW307j9K5aT+dE/vo3nJIhp2JsK6e7YeJThxgYPdxGdbVvfUgQ3tO4RuZYPrSNGxtYSxi4m1sw9rkw+UNYnG14mhsxexwoaippay8UkoOJ04c48yZUzzz9Dmee+68BOL58+epqqpCgEpsgjOJ9hf9IqQK4Y4RYr7gauJYpDyJ1YIF50pYj8V74pnEJkR+cZ7gjgLEQryclnDOf/qzj9EUqxhp6yH1kUUoUsvZ1LlBRlKUZSqoLNAw2D1OiyXEzG8uIO3JHNaHN2IttyC4leBsiWgT4XcT4BPhXSkzVrDk4SSEq0BYK4VhRYiYguOVrSyTjmUROuWostNS10j1ykoqVpRQubICZY6KqLePBbOWoauxo602y1Cq7AWZLP9WEnV5anztvbiCMey+TqxtEUniWFxrDPfK6w5/FEE2b4ckcT/xvL4lhN3XhaUlgtMTpc3fh93mR1vbgEPvobbEQEdLL6sXZsnQrrJVFaQvyCTW2kvGwixyknJw1jiJNHRgrrLSpPVQV6SnpqAedakRVbGW7JVF9IQHuSUMJsJyfdcRK1hdfBN6geg80flf+tKX5IL3NptNdpqYZb/3ve9RXV0tLZTiXHR8wmgyees2ly59xuuvvMiVCx9JXe7mjVt/FIArMbdiCfURHttFbMt+uiYE7SW6aR+RDTvlXsR9dm8+wNr9pxjcdZzebQfl3tM/xuLcEhzBLqzeMDZfSKoIrmAEu8ePw+PFG+nE2dKC0W7n5Nkzcm0Hsb7D1E0RXTJ5FzDvvfceExMT0hglRHgBJrGJfhkfHycUCkk9WlwbGxtDL0o83rOJhN68vDx5RRi0hHTy2GOPyXdEX4l+FZ8xTfifhO/pyvuXWPr4Ammeb1FY0aQrJQA29kzI5YEzU0vwe3qoLKjHrHRTtLwSXb6REd+wNIYIDiZ8bMKhLYwoxhK9dAUI3U6ImsLpLQCX/uQq6Z8TnK5weSHlGQoWz1wh9Z6wVRgh6nBWN+AzB0lbmMnmdXtpsHrpj43TYPLQZgtJN0XW7EwqVlXi88ZoCsRobv/1+4bWCI3t3TT6urC3hnG0hHH5ori9UWwSbDGao2uwCU7ZHMbj68Wgb6a0UI1O6cCmbqLVEkCZV0eL0Yuzzi2jS6zVdhnOVbaqnIr0StSFWqnrubSt6CqttJjb8dhCNFp8FOcqiAb7mBRO7zvcTe65JTtWdEhiEzPiiy++yM9//nM5O77zzjsSXOJ+d3d34jG5Fx91bSqut4gyEcJocv3Sp3IvomYuXrv1B200Eb66cquHxu5hBrcdYu3eYwxtP0z/tv1yP7jjoNwP7TxEz6a99GzeQ3RsJ7GJ3azdfRzv4BjZSj1N3YNSWmmK9uMMx2ju7MEd6sDdHqQlFMHe0kx5bQ0Hjh2RKVgCcFeuXeT6DZGbGNeNf/azn9HX1yfPRTsL8U9sQocTflAhVSREx5ycHIRY+fbbb8cnvtu3efPNN1mxYoUEmnhPZNcbjca77p7nn39e6nHTRKTG1KeTXHr3M1YuSGbBo/MZ614nIz/q8urInp/F8keX4TW2Y6ly0KjzUV9uYyA8zlB4A43qJgkmoccJR/eKx5dhKNZJEIoQLuFrE4YT4QoQHFCEdLXpWqVIGbKH8drDxPzDdLp7KUkppyS5kopVCmJtw4z2biEWWk92RiU11XY2jx/AY4uwJjSKqcgin/M0deBqDuNwtmNt8GFz+LC72nE3hWls7aC5tRNfsA9/oE+eN7V04A304vX34GyJYPfFsHi7sXiiOFq7sDd2oNY0Ulmmp6bCRNLMFOzC52eNx1MOBUaksUT414QFUleqJ3NJjrRiCkA2qJupyq2TsaC15Sai/gFpgFk7MC4zoeJAk33JTVnA6JctYcIKJjbhaxObsE4KEpsYEELPE4NAdP6Va2LpK7gyeYPPRLk/YaW8KepeTvLHwOEE4Ip0DVjaO+lYt4XYph10jW0numEr0dFtRNZP0Ll+K4Pb99E3sYfujdsJr5mga3wb/Zv3YvZFyVTqsAa70HmCUoXQewKYvAFpkTY0NePritEcDFBYVcmuA/u4MiUCvm9x/dY1uVSY4EZiE+BZs2aN1JUFhxNtngBYc3OzFAcTzwlRUXBEsb366qtSXxMc7U/+5E9k/4hJ0+v1cuDAgbscbvv27VKknSa9vjfg/R+/TaQ1iLnOSOGqfPoDfbRbfdTnqaWLYKilD3V2DcIRLkKcGk1tJM1aQVFaKXalFU1OLWkzVzDgHcChssn37GVG9HkalKsr6HR14rd4GfL0kz47FUulBY+xDWO1TbodhL5Tm6+WwcvCKOHUtGCtdaLI19DqCFKRr6a6UE2T3otH30bZ8jKq0hW0OcPYLK2oa61UlmsliWNxrbkxRHmpmhrhOFeaKCupk6SqNiKopLgOpcZOQYUGtaGJxpaoFCcdVj9t7k6ZyWCra6TbO0hHU7fMBshemk95hhJduQVHnZv2hpCM7RQBzl6zH58tKPW9SHMPTn2L/J/VVUb2bTsYN5YItiQ3ETwrZMy401uIiYLEJgAlgHevuVlcF85vIeIkAPhLzJJbXBbcTcitt8Vn/UKkHNx+go6JE0S2nKJzZzxbILTtMJEd8WyBX0T2JyL8f7EXJv5/6r5wA/TuEm6BFsTxb+sWEK4BEQqWWaWmQFVHhUaPrsFFa6STUN8ATl87Cr2etIICNHY7jcGgBE9jIISttY1qvZFvPTGfMqMDV2wYW6iHptgQ9lC35HINgQ7svgAuf4DWcISyGhWHTp+4Y9G8JYoiSvFSpO18cuFTXn7lNfqHR+QEFohE+fn7H3BjKh4FJHyh//7//DMC7T6ys7P5L//lv3D9+g3e/+AjwuGw1KtF/zz00ENS7xPHLpdLGlGEmiD6VbwnuOg0IU/evnqJT97+GTmpKzGp1MTaxCBqpjwll+YaK+OBAQL1bpxVBlxKIw1KA+YqLfYaI3qFHr+tTcY1Ckf1gL+fmCeKMrWU4nmr6bOGaNc2UppWQsQdpFrobdkKws4QinwFS6cvoSa/mqKUQlQFStpdQUZ7R6VVMjNpNeYyPdYyHYPCaJFcSP68dNzVFgz5asrSSmTol9cdZMZ35hDyRHGZW/A423GammkwNjEkuLXSRLC1k0arB32NhYoCJaoyDVVFNZRmVZCxPJNWm1ceF6QV4da3YKtzYlE6yE8uplHXiqbMJIEnYilFWlJZRo10fgsOt3JOCvrSemLNMWkkGmzrR3Bve7UdfZmB6jwl4wNjcYPJjZvcvvGLNBLROQ+03QPgX/gdEguUQEpWJWu2nyI2cYro5tN07YgDLrDjCOGdhwlOHJAO6/CmA3RuOkh04hAje87KlB6R1jO6/2mm/fn/izU0QmR8P0N7zhAc34d33U56dp+UAOvZdZocvYeu7ackidjJji3Hie08c9cPJ64JSjwj9r3bDlNWW0elqgJVXRUNbjOhDg/toWZmzHqIVelJ5Beu5D/+xb+hfyBIT087sViAYLCZJUvmMu3fTJO6uNnfi0VSDJu/B1t7Nw3tXTjbo7j8EZoDHZSp6jh0/JQElJjW7p2srt6Y4q33PmR06y4ZPBFbO877F6/x0WdXZEjmhU8/lpOYWN/vyOGDVFVVc+Gzq9Kzs2XrdilWCrVAlLAQLp3ExJmIDhLcb+7cubKbp926/KksvX3jk08oWrkabWE5DoUWdVa5TKqsXJaDKVtBc4UBj8oiE03z5yejySxBX6TAa2+lxxcj5fHFmIo1lK8qpjqrgvosBQ1FWsw5KpZ/ex793hips5dTvDSHLleINquHtbFRNBU6zLUOKnOUDIbXUJJegau+iT0b9sfFtQWZ0pEu8u3Kk0tQrq5isLVPZjJ0yiiQIEalkZg/hsfmwaQykbE0g0ZjI0kzk3BoHSTPS0ZZqMTr8FJXWofb4KanvQef3cvqeamYyzWsDQ/RUGMl1tKJIrOS2vw6Umankr04Vzq8C1PLWde9iZArRrMxQEdzP9pSE16zD7/FQ3lqMQOeHpY/soTcBVk0VNmk7trpjuAxNXNo6/44HoRPSFiqhPgn59sHgtsvRo70NYhZ+4YsMitETQFrAbh1YnBPnKL7VwAX3HWYtrEdtI/tYvzYc1Q1tJNX52Box3EGtx5lYMsRuZ/2H77MjtMvM7znFI09Y9KCuOn0i3RtOypjJnt2nb0vwPVvO0hVrYry8lxsNjXBkJtYVytaTSGrV85m7+5hOsI2VqfNpN2jozvSQNhnRV9XyJf/85/x9a99BYevg18FnMPfjbO9C7c/itsXB1yFUsOh46f/F8Al2uniFAjB/eMpGcvPe1fiC2fKTJLbwtJ1g4sff8DomhFZD/OayAYChkfWyg5MWCtFdNCHH354NxRP3BTGL6GTC6llGmIATN5i8u0PKVuRSd2qYkoXrGbRVx8npvdhXqXCnVePI6uOliI9Wd9JQpGUhbOgDk16GQ6FibKMcgRnSFuwiuwnV9GisNNa68JRaaZsRSFuhQ19loo2dSPtDQHMtTbMSgvaSiMmcztj40fYNnESh8bHjG8spL9tPeXpaiLNQwTahlmxrJj8gnoG+3cQDY2hKjBhq2rCWuak3dJOo9bNmvCI5KK5S3NIX7AaU6URt8YlMxHabX5q82skF61IL6fDHcFQrmfRIws5MnGITT1jZC3KoKupk0UPL6BJ65Y6rDD5b+7dgk3pkNZaEWmSPCsNc3WDTMHxmgLkLclDmViJQUgAACAASURBVK1AmaXkO//9O9LBvz60luJlRTJuVIjRtQVK1kSH4ggQvSTCIGSZ87gI+UCQS0zV9wm48NYDhDbulSBaXqrh33/lWwxsO0rfxCGGtx/H1z/BVx9dRE6NjS8/uoDlJWrGjpzH3T8ufWVCD3sQwKm0atLTl+FwaFHVFLJ2JMKTc76JzVpJKGhh86Yu1o74iXU4CflMbFgTwVxfyl//t/+AVqOSgBPczeoTFMPh7+HzAk70ghDuBeCERvf+tfixmLAuXb4az7eTUTxT/PjNN2R3iW785LPr8fv3dOD3v//9uyK/uCz0uYQBTJzHdbhJ+PRH75OzcDXabBUhnRfV8jIGrJ0M2WNULCgk87srcOTpacjXo1lZRXuNmy5rgMbaBgm4/q51MuDXmKth2BklYg1irDDQIvLiKkxkT0+lPktJg66JFqefBY8mySxpvboJi95HZW49pio3m7p3UJKswFDmoHilElWJBUWZhXbvEO2eQbaNHqG+3EGT2odb2Yyx2EBVRoX09fnMbZIbtuqbZQa6W+1kwUPzMFcapZGmcEW+tKIaynTS+d6qa5V+PZHZbq2yMu+heTK3rTS1lMwFmZhEwHKRDletm/ylBRStKCbW3EN3UwxNgRZLpZUGVQNek0d+jnARiMRbYakVeX0iW75oRRGZizIYCPbHe1V4Am5OIcsByCWO7+mt+zl8QMB17TrK4IEzmCJDeEe2SlB1je9jZMcJCbqCuga+/O25iGubjv890/7z14hM7GfT2Zfwje1+MA639TBl1dWoVGXk569i8eJZDPYH+fpX/xOx7maGBr0E/Wac9mo2ro8Qi7jxNulotNfhMFVjMmpx+sISaAJswr0jwNYgOJug9g7J4VraO6hQ/nqR8uLVK1LOeOv9T0gvqSY5r5zu9Vsk+ATgZPMKFeAO4LgdT1wVgBPBQuK+0KmFbi22e3VsoYMnDC/C2CXAN+3ypXjYy9s//Yjp353LinmrGIqM0qhpkwN/yDcqs7vtFW4q0pR0N/VSvkqBodzEqnnp0kQfdEUIeHvojYxQvLiAvDnpqDKU1BSqqSvQsK1vC8ZsDXnzswh7eqhRGOnxDqBIqyDz0SUUTF9G0dyVuCsNbO5ZT0eDj/Q5yzHlq9CtKkO/qox9HeslV818fDEZM5fSVu+kcGm2FNtE9vj8v50rs8gHmvtklkLeghzpHxxqHZBRMOUrSmV5h+q0KlbPSaOh0k5/Sx9hR4T531ogDTBdjd2MhtajWFVFWXIpAVO7TKJtqnFJo1D1qkryF+WQOn2FDOwWme0C7EJvVWQopMFIuDTyk/Joq/ewPrhOuj5EmYYj2+LpOTcuCyuimFNvMXnHLH0/OLv7zgMCLrb7JJEth2S0/5r9T5GhtDEnrZS1u84wtO0Ec9PK0Lg7aenZSHDdbqb9128g9D0RGfK7AFxeeRnpGcl86Uv/joyM5Yys6WR1ukg4XkhXtJE5s/4WTW0+Po+Rgtyl1NcU4rLWUV9TTEV5ES5vWAJNgs3XKcHm8nVKwDX6O2j0RkgA7vDxUxIg96bKCeD843vvsWx1Nuu272f3yfPkVGk49cLrUiSXIuUdFWDq6iWuXbrInj37pDgp3r1yNQ6kBLCEdVnocwnrpwBdwqIpnpkmIo0EO33r7Y9ZujyLxUmZmHUe6pVuFs/OJHluLh5rlICrj/JsDYYaN52+QbpD8doitcV6DAorVuG0zq+jYHEhK6enyOBdi8JGVYZKxmM6q5xEGzoZ7dnMd78xk+Q5q6Wes/qbTxIq0zNs9VM8PwVHRT11OaVYS9X0NfiomJtG0WNJVD2RSv3SHPJmLKU2rQBdQbUsIiRCxwQnEcmxbpWLpd9ZSubcDPqb+ulpjKHOUksu6FK4ELGOfY19WMrMWEutGItN5CcVELJ3UJWuJGANEzAF8eraMJUYsZSYSBNugTIzBQuzpGjcWG0ne3YK7koLufPS6W6O0lTfyHjXOGFHmHn/c64MBihYnE9pahk+kw9daT3jfRvuyU4XKLkT33UXOfd58DsAnKlzDY7YmLQ2xjYfYdr/9Vf0bz3Ghv3PMO3/+L8RVs41e8+hdEeYm1UlASfCrvr3nZFGkPsWKbcepqJWzZ/8m2n85V/8e/T6GgYGwgSCLlamPEle7hK0dUV0hp2MDAZxN6hpMNcwFAvQ7NBh0GtkVInD14kgp7cDATZhKJFg84dp9IbwtIepVNby6wAntN4rU1OkF5Ry9PzLrNm2n4FNuxjbdYj3Pr3Chx998ksi5fXLl1i/fgyhw4mkD9H8v2pNvrcnBccTVufEMxJwAnTvXriGvSmAsymE2eTB29qL295BXaUDh6GdFkeUaPsaahV21Co7DbZ2WeOkPK8ORZ4ad20raXPSiTT14dR5sFY66WnsRZOjo77YyLquzYQau6lcpaJB5aY0XSVN6/1NvVQsKcSarydmDZM1I42c2avZGFhPjzNKo9KFiL8UIp2wAgpnd8AaoNMVRVesZ6Jnq0yFaapppd0SoiZDjbnChlPRKM+LlpSiKdDRqGqhWeuh3RBClV1HXZaWiehWtLl6wpZOuY82dJE9N5uq1CqCxnY6LCEqk0vJfmIVvQ0RYvYA2swqnGX1GHNU6HOUMuNBkVWNcISnzF5Jm8FP1B2TsZTi/xNZ7RVZlXR6On8hUt4SafzC2f2LSJN7O+lzHT8g4NrG91Bs9zFy8GkG951lx9nv8dCCdDRNUSLr9zDtS18mumE/G48+z4JcJZWOAB2bDzF28gX6fgeAq9Eb+Yu//BKK6nKamhtob28kFvOzfjRGINiA32tnw2g3PdE2ahT5dEVaiYY95GSswGLW424LSqBJsHnDUoQUhpImXwdNvjDN/wzgLsuq23D4zDNMX5RMmdbK4oxCKVJeSyTmC6OJKCd5e0qu6zcxsUVyOAG6jz+J15pJ9FlCvEwATFxP+FZF9Mq0K5PxQjSfXryG2+0lEuyV5QyibQN4rEG6PENUZNYyEFgrQ5xEfZO5jy6i2eKVsYZVhVr8jii5c/Ooz9Uz1LVJxliWyEEbZmNkggHfWgnWWHAdqtW19DT04qr3krYojw5XDyXLyum2x2iscBOq87PqkZU0lDgkSFx1rVjrminOqqE7uI7SzBrSkwooS6tm6aMp1OXryVpUgFXhYtC/ji39uwjao/K6xxDAVOHAUuUk5OiS182VDYxFN9Nu7UD8j4Ota1Gla3BUulBn1zPROUHAECDWEJWlJYQ+G7OHUCQXo06vIFjvJqRrJKB1EdK3SP2tYEWhFLGbda10NfaQ+sQqWurbqC8yyNhLW20DR3cel2ataxevS6d0vIP+5QFn6x9ndq6CysawLAKUUmEgtdzA16YvRdca49sL0qWbYN3+p/n67GScveMyqDi85RCRrcJKeer+jSZbD1OlrqeqqoL6eg1Ol4116/rp6vLT3x+iO+Zl0/gAAX8Do2u60anLWTMYpd3jpq66DI26lqa2dilWCtFSgE9wNEECbC2+IM3eAJ720D/J4YSudvlW3GDyzuVb0nAiDCgJwN28nkh9ElkeNxgZWSsTnq8IDCaQdsdAcs+p1NkSup24LkVKrt/i1ieXmHzvAtkLUylfkUvZkhxshXrWNvZizqzDW+VEtbSEbYFRWiusBOpchDSNKFJLiTi7JGhqVtUSMIQoylRh13vlIFekqahIUZC7pJj0FSW02COYi63UZ+tkLp2m1ILXFKK/eQjxvma1mprlCtqUrdRnaEmfnUWbMYjb4CfY0sfSeZkoC/U41K0os4Upf5yqHA26KgfjAztZF9tCR+sAq5LyyVhaJKkvuB6vo5Oc5DJ5XpyuxFDtRFVkwKRw0qBsobXWh7XUTpvGR9qMNBwVDtKmp1C4KI91vmFpeR3zD1GdUsSG9n5GWqK0qqwyrajP0yezwUV8pQjvWj03U4qnIj3HWGbBUeNEW6bn1L4z3L4Gk5d/keV9b2fd21Gf6/gBOVznruN07TwpK2yJ8na92+PUt+0kgnq2HL9Lsa3HZa6bcITHy+sdf0DAHSGvVMGSZUuZPnMGqWkppK5cxqwnHmHBghksWjSD+fOnM3/+YyycN/0OzWThvCdYNPcJ5s97kuz8IjLySyVl5RdzL4l7NRodScuSKSoul+sSJJrrs4uXpWN78pZYqQ8uTN7mg2tx0IlQ8rc+viJ1OPH8x++LEvhTiDzDMyeOYzZbOXH6PJev3f4lwP02/TaNy5MI0PHBBSqXp5M7axnKpbmUz1lNR00T6ywR3FlqIlVOMr85n6q5qwlWWejVt1CfVkpLbRNNmlb0+UY6HVEEiHoDazCU2aQe5zUEKUmtYPGsNFmWIObqw6/zYyixosnVUrAwl+HGHmpSKilekEO43kd1chnGXK0c7CFTgDXtw7TUtzL/W/NlSYf1kfUos1QyObau1EhNmRFNlZ3qYh3+xhhusx+9ykVRZjU6pVNWHKsttyBCrey6NhY9kYpZ3YxR4aTT3i257paubVKvs5fbEfpeY7WTzNmr2dw5Tpu6WTraUx5LInvuShQrC8l6MhVLaT3a4npEJrhwHYjseJHlLbibSM8RoXD6CivzH02is62bW1dFZmS8WxId/9t00j/5zN0PEh/8+f1wHTtPyBw0Yd4XJCJFeradoHdrnBKA+3VgE6B7EA4nirqanR5e+94/yIErfsrlKxe4eStuWbh69aM7FgaR/iIsDYISdTfjhifxjjBe/CYST10Vgdw34+AQz4sIkkSziffEMwm3wE8/vY4IqhMcTnA+8V6CwwnALV20kP/4H/+ClatzpVtAfM7n2aaJWveT73/AR//wQypSMgkZXLJasjqliJzpyymakUL+Y8txZNVIa2LejGW0K604i+ro1Dcz4OyibHmJTEcRBXOGPcP0NfbIqPnU+elSLK3MUKDL05G7MIfqrFo63FGi9ijdxgD2tAoyvjETw8oSNKsK0WRXYCmvxVfvRJ9dTvGsFYw5Aqz6m5m0Fanp0LhkhecjG3ahyqtk/uOLcRo99ITWkrYkh+zUUkpzlLQ3dcsirKU5NVQVqslfXYmqVEezLUiguQutwkb28iJyFuRSvqyM4qQialapyJuXS9QWYa1vhDZNK0u+swhvfSu1mQqZf6crVOM3tqBYXU7A5pdxlI0GD33+EXKWFaEtMtGqb8dZ24K50i7rwIjg7E3D27hx+TbXLk8xOSmA8cviyOfptF969u4H3R/gIjtPcC/oft+AK6qs47XvvXG3PcQyJyLwSgDr4qUP4wBLAO0u2EQQ+J1A8ITp/jfs7y3kJaotf/Txp9J3JkAnSADu+u3bfHLtpjSUBAdG+eEHlyTg3v0kXsYi/l1T3J68yo/e+D5/8if/lvc/uiTf/fyAE4vK37zFjU8vYanVkrEwhbrcChk1IjKuzSItp7GLwnmrMeXXokjOJ3f+Sub+j0cZbu6kemkhHcZ2GbxbvKqMRd+YS7u6RdbyePKRhRiUNmryavFUuzm6dj9l6VXY65xULS9ls28tdUsK8JTqMedUYy/RUJ1RgqGklvXBfim2CW6b+cgiBkxeeoweyhdlSHdB3qJVlK4qos3qx21spd0ZoXB1mayh2eYI0B8cQacwy/O+0DBdbX0oi9QsmZWMo74Rt76VNR2jGPLrCdZ75f+T/Mgyqbcp06pQZ9VSuqJEJtLaFDbpCBdRJS36VlLnrCR/eQExb5/8nm5vP2s7x/HZwgRsnVJn9VsibB3YjaOuiYwluYwPbolPw6LgkYg1EOXVRfHSB90eBHA7j3Iv4ES2dSIeMsHlBIe7l7slxMnIjuMIEjlt92ulFBxOa23ixZe+xyefXubqtcRElHCZxIEnuZoEoXBh3QM2sZjm9UlplBCGiQRdvyGOp2Qpc1HOXJQ3F/tEUyX2CcBdu3ULS6OHxlCMiQMneWT+cv7h7Y/uipSXL3wqwSZ9cTen5EqsFy6JiJ7PP2lOE+i+NDnJxauTzJufRGe4F19zkE5/H4tmLpMDtmBlKfkpRXR7+7DU2mQ4Vl+4n7pCFepVldgK6+n3DVCVWSktjZVJeQRtQfQKI+3OMMOBQXSrlYw0xeRAVRfWkfKdxQw39TES3USjoxOvowt1kQVjqYNmjZ+MBQWk/f/svVeUXOd1Jsqn+3Dfx/NwH+7yXTMjz8gSxQwQABEbnVN1qKqunHPOOceu0FVdnRNCI2eApJgpUqIky2k8Y/veuddjj2zZY0mURJAAifzdtXexQFASOSYgS6bMWuvHqdyoc84++//3/sJOMWrZVahlHqgVXjjMSTQKG0h7qzCM2Xl9uJRfhnpUBduUDXlfDjnisE2ZQUwHab+EnyemODWzTSIjv+5WuUBrLxI5co6bEZS4cGn+NCzDOiyn5mEa0UHeLeH+HTW5FwvLUI5qUYxU0bdjGOlAEapJAwO4iboTIZXoQAXiPgWEPQrMF9Z5jUrrz0Z6AXaVBy+ebRdNaErZOeDvfUATmQe8db6M56qfcUp5/hXUKHDukTqfPf0N0Jg79fFBz3XwkCSLQJ+h8UABd/pVaCx+/Le/+js+eWnq1/k5RKG5g5u4dfsaj9u3rrF/AFlEM5+QxFw+xiukDH/PoC/68EZleRqdG1UQqVdGb+lUKbfs3o+Xv/ufcfTZV7Fw5CxWT1zAj6nARR+jICedem5+38aPf9x2riXRqXv+TOfrP3X70Ds3bnHC/rO//Cvs2juADBExIyVEAkXMTh9APtZEyjfNRYbBfUKeis2WV1DNz0MvNiMsc4ECTLZPCK/MwUGl65MxAoUAygSlMtOJbo5BtG0YeUcK1jE9Wt4SlN1SFLJLCEVmEPJVUEksYbN1DkFdCllvHTOZNahlXmhUAYQjM4iE6sglF+DVJ1ELz2MhvoIDhVXkrAn4pA60IjWoe6UIKT2I64IMJSs5M1B2TyGocOPEzGEcLq/BOKzGxPZh1sBMagKY9eZh6pVj1l9GxhiBfljFwRi3xDGxT4ihnQLopizo2j4Ii9aP2co6mrUNaGUOGCQOPP6lbSyZRzqVxdAMxvZJINglglnihs8YRdAWx/fe/DPcuAL85EcfmXAQreaBb50z9D4CbvpCO+DIa4CCiAYDjD8l4O4Ntl9dwP09B9w7713Dteu38d7VKzxu3oW/tddrHFCd3/thbBFi59PGp+3fzlf94Ec/QnPlAKyhFA6eewGP7+m/WzShLEjN7htX3+Wgu3q53QagHtx9ZTgWjroDXP7JLVh1PswUVjE1pIdZ6kclugTjhAdpRxVxSwlhQwZRcxYLxQ0YRA5YRHbWF9mIN1jUhwSACJzsVtphndAhqvPx1HTXl59GyhHD5M5hVK0JjH1lD44XlmET6JBxp5EJFjl4u7b0YqmyhoXSMsT9UizkF2GX2Jk5TnINRA+SdolhHjPAJNBzldQh0KPpySGj9bOm5cBXdsI7YWBBouVIFZu5BWYtaLuEcI/pINraz6/Tds5fhH1QicmnurEYmoZPZGa2u1/hYqXo82vnmZZDmiZeS5yDLRNvQiWnpmsWc80jvCYkCpFZ6oFF5oVuwgHBHiksEh+amWUmr471iLE+f+TuEaID3Vmsf9oJ8U96rXPW3GfAVc++iirRd860B6lsNU+9jtbJ9uhkuk6G+1UHnCOQxn/5i78GZYtOI5n0Nts/q+2Cw044BA/h8fFE1llftbPPh6BwBoa3I5JkLG7euHYX0d8p0xOi//J77+Kddy9z0YTAy69+779g5cRF/O0713kNd/lau9DCQXbzGm59cKWd7WhlSUnvfqaU/KlbwNvf/xlS3hwkA6p23yo0B4+UzDmWUPLOImLMY618HK3sBrTjDoj2K9FKL8M6aYF9woiqJYO4yoekI8WKxaRbQurJnikH6uFpVBMzmM+2YOpVwj2qx9hTg9j71Z3Y/bVdMIj1qKVnUM3UIBmR8zZgCqJ/azeiugASWh9Uuycx9PBuOIZp2lqGeVSLiisN+TNjcI9qYR9UM0ysZIwhSVVDkQ1BoRm+cRNL79FW3yVCcMKCsimKeU8JDnL4UboRlNkh3S2AU2RkO6rTc8dgGtdhbNcY02uOzR/HCydewaG5Y6imZzG0dxxDXSJmg1PBpJ6cbQvEqgJIO4s4sXAO89lVLOTWWGphomcK54881z5CH1+C/JNi6lPf9AABVzn/CijgSHLu3oDrBB0FXmeKee908t6ga1cp75Oec/pVyI1u/Ne//O+d0/CeKSXYYurub+/8zp/btrPb9Q/xqZ3tR1mvnRVvfWxK2flO+ioS3KZq5E+u3cHlO8BPb7VbA1Qn/cmVG3iPoHickH50d0pJXDj67Lvv0bs+2+0hkJLvj37MXT7LFGEFx2Aa0UCyV4zRbQJsVI8gYstjOrWMVmUTUoEF430aNHJr8BqTMKn8GO6ZglZkZ9cYcpWZ7JPDIvUw0iNtL2Ahu8z2UvJhLfY92oecp4Th3SL4bUns3zmK1swGkqFpyIUGqKas2LO1D7X0PCQDCmhHDYy8X04vI6T0IywPYMY7jaa/jqFHezH0aA/CCjf8U054xVYULSn4RFbuIx7MLkK9R4zDmUVUrBmItw7BKzBj2pLkgo1xQI2F7AJK4Sr2PN4Fm9QOl9wFotRI9gtZUUzdL8P4tiFGlWz/3UexmmjgQusoypYIJM+MIKYPovvRLhwob+Bk8zgylgzcU27s+U97INg+ioQ1AaPQgNXaCu5Qd/XuZZFIpp/9gP3C4e2cgPeR4SjgqPBBAfTzoxNgne3Pv955TEWW+yWgzp95FUqzB//3X/2PTkmEsw3tIuKodXYV/cRPv3Uqlp3tp7+78yp9P62if0ISIwB+dqu95WB7v03P6fwf2p/5cB5L+/rufu982z9t+xAvLG7fwI2338aerzyOjMmLgMTM0z3pvin0bRlC3zPj0EjciIfqOH74RVbsmisdxHz5AJbnTiAVnUHcX8VseQMpXxUbjeOYjsxx4WAxfwCzqSXsfqQfSW8Z+WgLTksCB9cvYXXhFJZmjrAvXNSZh2rCxMgWZlinl1iEh5rTT35pOwa3jSHrLiLjKkHWp+Q+3pHmcSwXVjC8fZgFaElWnbwMyLlH0Sdju62N4ioy5gSWknOwjhnR+7UuqHvl2P+fdrGGpnBABr8jhWp2jgshJ9fOcm+NKDduiQ2jT3aDpqn6rkmsR6vQPTOCOWscM7og7N1i7P+P23CmdQxTuydZ/Oho+SAGH+nB2blTyNnTmAlVeTr97OaFdsOHjuDNGzzNIe7aA9/uHng6GT570eSTAq4TUJ+2pYolBdz9CsES4/uTA65dsr/78x54R/3iF9ChuHyzzYGjgPvB5ev4xvf+KwchZT0a9B4aH906i0daV7aB/x+99r++9xCXXG/fwN/++Z9DMSCAYEsX1pJNnG5swjRqYMk3EsRJh2rIRhtslFhJtpgPRjID5cgMV+IsYhfrnoR0cdQiDTQjc6w8LO6Sg8ib1BCn3hcBo4WTeiioFUASBKNGpDQRHJvexGygBqvAwmrGBIsyi60sqUDKV2TcOF/fgMUQhNsZRzJWg0phQ4wcVbOz0IpNKCfqXPr3mcOYLS4yqVU9oYfPEAQZchTD0zBJrCy9t1ZZx3S8jolRJfQ6DwK+DFYWjrK1lHxUjdFdIzBP6FHzZJE3hJDX+tC0xLFkT8O4bRhNTQA5iQMXmpsgKQmLwIDRLYMcbKZBLbcbiDBLzAIi5F46fL4dcHS87tzmgPuNswU+JcN9WqB1XvttCLhOw/vQ6efROyaF0uTGsEhxN+h+5QH3zts/bMNWLr8Hn9qIqifJOv/kYEMoi5lYA11P9mL/tgHsfbofI12TrMlIjGjikUn6ZBh4egRmkZ1FgKT7ZVD1qzGyZQTqPjXGdowzWHmpsMbl843ZYyyZHg+UWGRVvV8GW78GGU0EC+EZZI0JDD3RB1m3lCUK1uuHsDi9ymI8goEpLM1tIhzMwetJwW4NYaayjJWFIyjlZjE2LOOxsXQMI30ikPOoVevBaK+Ipeo2l07ArHBAMqKEXmJBJdXgzHZw8QQWahsoxmoQdE3i5OoZHKxvoP/JbpaEOFRYxPgT3ajbE5g2hVHU+DD4e0/D1i/lQstqZh5rJGAbqMA6YkDNXULdX4FuSM0Fn7QzjjcuvAZcvY071+gQdqYmdJV8wNvdFPBFhvuse5KOBAXcj68B+0fEeOmtP8Qrb/0RSs0FrB4+cXd6+8kZjvb5Z7s9xAefhFT+9gfoeXwHKu4ElmN1pHUhkGY+Sd+RAWLAHEExUsFE9yS0AjVGt/eDCJ90QiciZYRdaUwnG0g4M5D2y9lVhpD+VW8ZcXWIs5d/ysX3aQ1G93PWNMslFNwZVvLqfaqbjT8OzRxgJrdFbIKWmAI9IiZyNlMNtv+dTTdhmDSilV/AxKAUuUQV+WQN4jEVsvEKB5d6yoS56irmyssQDkiR9OXgUHu4GnpgdhOyERWk/TLWwRQ8OQjLsJ4VpslTgRgCNA19fuMCiq4M6uESMvYYtAIl+5q71Q6kXHEkbBEkjGEMPNHNU0rRznH4pG7Yxs2wjpkw7S2yBmfen8GLp174ECtECe4mbt28jtt3aNLygLcvAu6+dyAF0uUbbSMYmd6B6vwaTl96GQa7F9/707/49IC7e9H8bH++HXBUbn3/Bga370P/Y7tQ96SR0gYh2jHCayKSHFirr7MGSCVcRD1SwLQnBUmXAFF7jMv6WV8RIWMYigElKyyrexVIaELQ96nw2O/8PlR7JTD0KTG5ZQRxVQABsQshpQ8r5WXMlRYgG1XApnKgmqgh68nAp/EgoPMh70qj55G9EGwdwOiWfqj2i1Hz5FFxZLiXlnZlIB1WYmTvOEb3TaCWbDCShQw0CKXfSDa50kiMbqL3UMObmNwk20fuQBT89H/rf3g/osoA/5+LjizCmgDz9WwiE2ucUFPdKNJBNaaEXWlDxBaGQaiFZkiBA6UV0GdobZgyXcszcAAAIABJREFUxuGVuEColbKnwPuCzEhIBY2P4G3g2gckfUeIvS8y3G9yDUfXKrrkUZZ7++otRHNl2LxhXHzpVfz4nSt3A47e99GtMzvpbD965Z9y7yGSCXv/ylVc+eHPsPOrW3Bp5QRDp6Q7x6DunoJ4zzh6ntwP6YAYWW8ChjE5prqGoNw/CuGWbph6JFxi9wnM8I4aoNszhbjMjfCUi3VMmv4K6v4Sy4HXohWsTq/Bq/ex1bBaqINgQMTIlr59Qwg6IxANiWGRmZF0xmAQqKDsFWMjO4ewzMF9NDL6UGwfwdDv7eC/5xAYIdg6BMoulJk03TIsRpsoWFKYD89AtW8KzjETNHunYB3QMH5zNTqLqNQDqlImSSFaZIJhysLGiYTsJ3uqxcISw7nII4GY6RRMREJV7BOyVERgyo5pZwYZcwyGETUmnhEwK7z3kW5mk5ORJUkMklanuHcSi+WFuwF3/RqBcdtIin/KQfrU93yR4T5193zai7Tr6JL3w3feB9ncU9+NxHPpOcp+V659BAf7xe+5z4C7RbAVEkv54WV0PbETMYMXSZ0fa8kWoiovAko3i+roxlTQjMqwlJuBX2GClYDGQxKMP9KF6KQNJU0YzkENwkIbyqY4CoYocsYoWqEKS9xlyE110gAKOpLG2/P4XswV5pEJZKARapANZhEkCbsJNUQ9E4iYAixQVHanEdP5IHiqBzOeHBR7xqHaM44DiSbq9hTrq8TlPi77p1RBGPfLod4lgqVXhbjUi4jIiZOFDTj7NHAP6JCVBxATOuHq17a1WbxtLUnKiI1MC2lvDoohJXZ+dRdnwo3KBsuzd7wTAkovZPtF3Hwn1Az1CUNqL1ckqRk/tUeE+XgLJO1AxFlSl+56Yk9b0+QmcO09shMmEdLb+NllQsM/4O2LgLvvHdgJOMpyFGSd8fblK8wwoKC7u3t/4a/cb8CxS8tPeSLbSE1jeOt+BKQ2rGfmsZFfQs6eZFT8fLaJp3/vcVRDWdRCaTR8KRzIz/L6Zr26Br/Oh8Ft/WzMQVPAVqyOxUQT8r2T0PVI4Z+0QLp1GE1rBvpdQqx6K5A+OQjvqA6qXWOoO9OY9RdxtLTCrGryhqsHi+h5ZDcbMS4UWmjlZ+HWujC8dxgz2Rlox1WQ7RMjZ4xDtVuEw5llLIcbmPdXmcdnH9Aip4lwU3411MC0MckqZBV9AnOOIiITdsw7S6gakghN2pFVh2HsV2Fi6zAcIissIgt8+hAOzB5BKdmAyxZFvbqCmZlV5ItzGBmSIOFKwi2z89qT2hFk0EhuqAR8JsVpt8IN7aQGx1eP31NjpuzWltv+heP4WZ+4e0bQCfDrbwusPPdt1qqU+nPcjyMzRrIcXnvhD7B46Vt3dSkbv8Qf7jfdFqBdR0HVyWh0vzM6u7Wz/ayH5ZPe/9AHBAAlC6Q//UtErQHECGFvTcA8rIZuQMVeAJpRFQOT6QQf3tEL+5QexiEJFpOEji8hYg4zI4Bk6SLGCBdVyEtAuEuAqrfE0zCa0gWFVriHDYgJ7XD3aRGftGPw3+9AaMwIz4iWkSFJlQfGfhlmfHlGfUz7czy93GisQzYmx0xxFmeOXcBw7xgW6eSPzSCmD7O4D1UKs5YkSs4cDEMauCYs8IkdzK8Lyzw8vaRK6MQTA5wRrX1q2LqVmHi4BwveCrb+24cZfE0SD4upOdSjdfY+KKeaKKYaUCvt6B+cQmVmFQ5fBiajn6efS9k5kIfC+E4BcrYMu6GyFXFyFgeqB7BQmseLZ17Etcvk6017ux1wN38L+nCpldP433/3Efybh5/B//HEPjROvYLcxnlMH/06mzJ+miHjbzrg6Eh0gu7ebSfI7t1ykPwK/nmII/zmbVz96VX0bt2HuXiN1yX9j3ZD0S2DW+GBRxtAzJlG2pdnRWQKQJ/SgYorC9VOIaaeGoapW4kZZwFFc5rL46SORSchqWKRoCpZ747tGYdsQMHrI6/Gz83qkNyFzcIKkrogI0bEu8Yw8Nh+dkaN6AOYy8wyJGxgWz+kQzJmIBAMLOFJIeKMwyC1wmeL4sDiMa5EDuwe5ZJ/wBpF/zPDsCqcSHqycFMfjQJD7YFsQA6SRUjYkzBM6lGKlDGbbvHrOqERepEJJGluFFux+9FuDO4aR9ZXxnS8ybosGpJ8t2W5R0hqXSQcS+Yl5AqkG9ai4p9mP4bJvZOsV5kLZPH1My/cw/YmgO67LNj6wMewc1b8ipEmnV7bp22pD3fim38OgSmEh/63fwPKctQIP/jyHzGDnDy+/6UHXCfo7t0+8DH5lC/ggHv//Wu4dfUWpgaFkOyfQEQdgLZfhaXMMg7UNrFc2wQROQvxBvp3jYL4X2RGaBk3wjaog3L7JLLqCFcetT0K9pRjDwJbki2eStEaNpqbcBuCiHuyODx/nAN4OlrnyiYxCigYx/YIeJtxpaAT6LhSSdVFkjTXjGhYTpxssUa3D4LceqgqujJ3GBsbp+C0RyAYkSERKyMaLrCngNMahmBICumkFpV8C/FgnlsHRqUD4lElisk68pESlmqrcGl9UI5poRrXcQtkpXaAqTjU9CeiKnl7t3LLzADQTlgh2DsFEoIlq6rxPQIcax6BXWxlbCkFXNqa4j4lcedoSnls7Ti4C0AcrlvX8c7VyxxwFC8PdPsNB9zys2+BIFq/87WdLC60ePGbKG8+hwMv/xEi88c+FwH3QPv/M374ISLr0e3tv38bCoEUuhEVxneMYj2/jsP145gvHkQ23MRgjxyxYA1ucwrrcycRtefg0YbQSMxB0qsA4SSJDyYd1sAkc2GusgGbNoDRLjGLD6U9Rcxnl1EL1pEypRhRMpdoYWxAivFxJYL+LEw6DyaHFZivrSFgjmK+uIShbcNsf1Vy5pExxDD2xCDkz0yg90u7IO+aagdOeR7Z7AwOHDiNQCCDYrGF5eWjWF89gWy6DpXMgrWlYwj7s8inZ9CsLPMgZMq0v8BIkaGnelFyZ9nXTjGgYEuqsxsXMVtY4Ua925xAObcEtyOLSKiGE8deQTGzgIApDNH+SV7vkfryWmEVLomT/eJICqIen4FZbsZKYxW3r7XDi9ZvxGsmNY3Pe8BRgM2efIm9BpYuvYnV57+DhQtvgvwGFi5+5C3wL3EN146VTvHj57e/PJI617fO9pe/65Of5bbA5Z+9g2s/fR/bH96K9dIyV9rmEvPIuKZhVYSgEHuQjM+jUT+Gpbmz0MgCsOliWJ45zgI+04lZ6KQuprAQ/MusDyDkLWJl4TjS4TqOrZxjaFfElEDeUWIpOmO/AQ6xE7XcIlv8GnV+eBxxeG0JlkyQC9q+caQLYpo0Y3TrKA4U1nAgu8YMbfOAnquBQVsMBp2bs5tR74HdHMSu7X2wmQJIhovcCLcZfJzZIp407Hof/PYY6HPkvU3OPsSVi2kDXN5fLSyjGq5CuF8Mm9KNNGW4YRVIIToSnEYhtwyDMQqVNoBdO0aQDZC3QAElfwlHiK5jTbE+pnpYA+2YDkFDCBO9E5ivLLQBJrwwbwfcB7fe/9wHHAVY7chzWH3+LSw/+03Qmm79hT9AqHWEs9y//Cnlzwda5/EvD5pOoHW2v/xdn/zsQ8QPoj7cO//wU4x3jyJljbFBPKltpZ1l9O+WQjzhRCazhpW15+FwlKCQBjA6aEQhtoil0mGcWbkESb8OMVcBx9efZ083qdAGvcaPoK8MuymGkR4FBvaKWNJcPqxH1luDVmBGK7mEkr+ClC2PmXiL5exsEheitixTXnL+KoOYlyuHIegStxW8ki20iusY2ScCUV+IRycZUqB3+yDbZylG1Vzin+wSMgOAhH4IVULrLWp6dz3axY6txAwg15u4LcbeBGFrhPGWB1tH2CqLqDgBSwIqkQ0De6ZQzazAb8/Dro/DrA5DL3Mzb48Y5SSbLuoSsYrzdLDCoGpy1tn/RDfGe8axuXzkYwFHdklXrrfJqJ98eP4Jr9w98nSi/PqrlPPn32BXnebplzF95FlW9Zo5+TJnt9Wvf/dzMKUk5P8v8ujaB4v26cdvnd3d2X781f/1o4f4EnsbuPwPb8OhMIH6baSN71P4MZtYhFXqx9SICcXsGqzGFGLBOuZmjiEdbkI0oIV1ysviqz5VGEuFDdgkHiScBdQzS/Aa47Aq/ZCO6KEW21HPr0AyrGPb4nx4Bm5tBF5lCBkrVSTnEFJHWR/SJw9iKbeOkCGGoe0CyIY08JtiODR/kik9SrEFMX+RRYKoT3aiuYmEOYKCM42gzIm8KcZsh7XsArPAj06vc2EmovRwE358xzCmdo9jPtGA3+jD1NAU7HILxvaO4Jmv7UTKl0ExVsWOr+3GQWKJz2zi+NwpnjqPdUnZQWe9fBg5d5GnjDFrFI/+uyeYMEtFIofYDt2ghiUaAvogZguz+Mbzb+D6u9c/DLrbuHbnBq7euvo5z3DfQPP0q9wOoOpk9fiLKB66xMFG9wuHLn1qwH06Peefny3QDo/2hYqJrHfhWp0s988RcCTaQCS7yx8gpLMjavYjaY8ioY9g5KkBxkKmLElIB5XQThiZ9qIdVjNaxK50wCa0ImVKIGvPMLtA+NQwUqoQluNzmHx6FEGREysxYg60/bmpSpkLlhkILRxR4sTaJWgmrEh5yki5Sxh5ehSHyodwsnUKC4k5EM4xrgtzT0vYNYG+LT1cFRT2iiDYNYSozIa1aBUekYEVkS27xqF8rAdjv78Tmt0CLPgLYKUxpRf63WMMRyv60/BITBh8ah9S3jjMMgMmnu5FXO3Ccr4Jl9YOp9aO1coCJp/qRUxoRV4XxPDjXQjoPCi4U4ywIfY6mUu6NG7kwmWYyKZY4gSxBQzdCqR1ETYJUY+rcGj+ULslQAJCV6+wqdQVUAP8AW93L7XtE4coP7Q2pOozrc4/1a7qAdkCVMFs8+XItPEjiYZ7K5t3ia0dCYdzb7AOCmuhnHn5N0rP+WjPfzYe3Uef++z3HsL1G7jz3ge48o9voxROwSLWYXBLN+MDibFNGh9NX4mNEClD5C2EHikionGh6E4wEmUu2kDKGGMAL8GlBE8OwDykRVofZfgUwa7IA4DUu/K+AnLBEkT9UvhtcYScGYScOQzsmkTvNgE8qgAq/ipqvmmk9TEInx7BXKjOmavgSCBuCEDZP4XpQAb6ERkM+4VwDMpwtLAAc58YWbGN6TPuHikmH9mDjNyJmMiEyLgB5h4RkuYAsp4YZmNlFFwxLOabqPjTKKi9mLXGcWx6GXsffhrSASFME0rUrDHMmCJoOJIIyMyoxopQjUxhamsf4jI7gnovssE8TqyeQcqZhqZfhaS2XbFV7hXzhWv46V62cea2G7c9b+P6nRu4hmuf+4C7N7h+2f3PR8B99sC530889MF7bY/jv/7BD+BxB+DXOmEcUWIhN8dNbFK2KlnTsO6TQ75lGH6ZE36FAwm5C75xA4hVLd01ifGnBuGTuxF2p+A0BxkiRSj9fLEFtz+F5eo6IrY4NlqbMMntbEFM/gB2tR8kgT62TwzBrkmYZS6UgzUIt44yqPiFg8/BI3XCNapHyZrEUnYWs6k6UtYI3887Ehjf3gdLnwyLgSIK1hguLR7DgreIM8VlrAUqyBsCkO2fZPm9qT0CvlhUY2Uk7WFou8XwjagxLfdBv3UISZkL5iEZUuYwrJMaeMb10JPn3LZ+LJVaSEVyOLx+BLJhKeLOGILuODQiPSZ3jkGxRwQi7Y4+I2Clr2ZshtEvBEW7SDJ5N4GfvvseroNUpDpAovs9dB9+7jec4X5ZkN373BcB9/Hj+xCfBG//jPUZjDordnzlaWgG5PCqvCj6SrCLbND0KZFWhhASO9lw0DFlYTTK1NPDDAJ2C0wwD7Y92vLxattvW26FkPCXZi8S+RlIxzWYzc2z7Dc5ylycO4VnF8+xuWHIlsFUvxIXNp7DfGEVgp0T0A9qWCsyqPIhpPaj6syyjTEJEVnEBij6xBB3T0Ar0mKqTwjlXiF0PVMQ7Btj+BehZRrODEPKZF0TzEQgV1R5l4glyo1SM8SDYuQtcRa8tfTIodwxCvUeIaadKWj6ZCh7MqxG1vvIbmYt2GRmKMZUMMlM6N8xgMk+ERYaa2xXXPOV2ZSEoF1kN0w8PnLUIYmHice7caq1iTvv3cSVGzc44N599x3cvk5mfx8/IJ/50RcB95l32W/yAxxwbGz8o2swjChxeG4Ta/UD6PrKXpiHDMiY0khZ0og6MpgtLmF0l4ChXJlIEa38HIRPDSEucmElMYdpdwE+qQvdj3eDSvGFTIPZ1mahmT2znQoXzH0qaHZMwrRbAtm2cSTNKa4+kmT5xSMvgnzdsiQTrg9hMbfEKH8CJS+kZ8H8uH45yi7ql8WRdCdgM/vgsYUwRcyGbiFKmQbUUiNn556H92Bi+yjz6YgvR/7fpP61/+HdGNwjQLUwi7niEpxaNzzGIEL2KDQTehAfj4DH9WCZMZIeuQNpUxymASWTZa39SgY+E3vAIbdDNizH7q/tYS85ssiafGYcXqmb9wVJLyRNIbx2+qX2oorX4be5C0e6iw98+yLgHngX/jq/oB1wRAj60Q1s/9IW2NRu6CVWWCasLP/tErqRtuSQizZYTpw0/v0aPzQSM1YbB2EQ6JC1pZh3Rmu0JRL/2S9G1JvBoeUTjKLX9ClYtUs9rmMfgZ7/8Ax8E1b0fmUvwoYIZzmyvJpJzWNs2yj7spEJhpdUwDQhnqpN7BpljOZyqoVz8yfQSswwR2+4X4xMqgaVyISFyiqqpUVYdB441F7WJrFM2VAIlSEcUmDf1l6IuqewlF/CcnWDIWAkgdeqrCCfm0Uu10DMnWFRW7KrouzKhaJRNbRDGniFNmQkfvT+7jbMOItsp0UXApL6m80vsMQfObIeLh/AQqjRFjZSedkD/YWTX8flH/wEN396FR9cvowr77+Hm5/zxve9U8dPuv/FlPLj4fzQj65+AFIp+sGPL2Pbzh6kEhWkQ2UkPQV2qHFLArCO25EzZiHZKULRmoNxQMN+bq1UC5XaMuzBFE8bI7ESPK445CI9Ky4TCoPwiiRHTm6oxBgnRjY1pdPJKnQqB3LhaQxuH2a3UYJEHVs8xUb23V/eDfkeEcuKE4lU36dETOnnYCEpPirCkL82SanXKssolpcYTOw3xzGXXwLZbblNYdBjUv8i6QfKmC5tkIMqac+CkC51TwXkUWfXBVFIzqAWbbKLq7FPC4vACCe9P1TE0J5J/nzBlGFmuNcQQTZU5ovLwNN90MmsqOXn2GwkIHGjZs3BNW7mKbRV68CFYxfbit3MBemAlz/fSJNPCrJ7n/8i4H4u4CjYLt+8jX947zpmFjaQiVZY0jtHhhbNEygFGggqomh46lDslsE55YJHRspebozvnYQ3XkB+aQODQiWm5CZotU4unBBan6TrZD0SEIiX6C6SHgnc9ihK1UVki7Pw+9OwqT0g3KWsS4JGqA6rzImEPQXbqAHTjhwHXNyZQitYY/R/QBtg9MZUl4hL8M3MInz2JBZXTkKpcGB05wSK7hKy1HyePYLV2aNsqnGiehRRJVFtjjF6RD2gQUoTQ9M5jbQ2jv5nBGwEQhZTNJV2DBqRNWcQdGUQjUyjNXMQVoUHs5FZrBc34LYn4POkuLEu65egnp5lEiu1P8h1R7xtjEmxYVMEe57cg+XaMnDlVtt0jLwcblzD1RsfmkV8/Jh8tkdfTCk/2/76Db/7oY480Q+//1OIh6TI2NLQD2lBRoikkZ/115FyTUO4V8rGjLlUE05HAkPdQrgcMTz9TC+m68sMo1qpbUA1osZCfBaqJ0dhfWYKF8ubUG+fwIwxDcX28bY5hjWG4X3j8BqCzBjwq7yY2DeJvqf6mLFNuiK0tiIF5rp/GsJnxlCLzbARCK2NyEqKvLTJ0ncuvYiQJY1ElGTQWzhQOoyALIjxLik33k0SN4zjNrQ8MygZc+xH59aEUXNVUTbkYO81wjXuhN+cRMxbgm7UjIg8jMPpDTaO1EpdcLoysBoimEkvIaAIIWnNYWxEA3+wgFysgqAhgDOtE1ytpSllKzOP3Y92YXzvBDQDSnikVpxdPdnuw5FqL+vUd/TqH/AM+CLgHnAH/no//hAXTD4Afvb9n7IpBmWQuCUBj9IPk9DBSJKINYOsr8Ky3STeqhSbYNC4WTGLcIxUjSR8IskTBDV+xNVBlAwJHIy0mNwZl3iQUYWg7ZbxumiluALduJ6zF8mXt2IN9scuB0hwKMg8PLPMzpIHJGSkH1TDbwijkZ3n5jpN9XKOLHuwaQa1HCTGKRfUY2a2Eg6ro3Arg7DJfWwbRXbDyj1yyHZKoOrVIGcrYNpcwNijw/BOurGQWYV80oKgp4Ddj/ZiIbEE67AFD//bR5AKVrG6dJrhXeSaqtyrgGyvHBqhDbXCElZmDyHnzSJriEG7T8LkU9J3UYvNTGeKaIPMoH/x2HO49e4N/Oy9KwxcBplLkBAsBcyD3L4IuAfZe7/2zz5EXbjrd4Bb7wPZaAn5fBPrqycRtaUh2iWCrkeLqDaOiCkF44QFQ7/fxbIFROERdYsRdiSgkJgwNqZg2Tq7ys24xmZzHUsLmyBoU8QcZWoMTSfrqSY3wIOWKArhaUx1TYLMP8qONE6SFqbICHGPiD3Zeh7bj2Zugak9XQ/vA5kzrlcOofuJfhypH0U9UGd/t+6Hu5HSxTEXabEjq2JEh4KriKQxicX4AnK2HMxCG5wiJ6a2jMHWq4N3zI6oOgKDyIbuvePwBvLQGfysAO03RNkXPKSPti8yphibLIq2T8A3aoPo8RGcrB1jlA0Rbl0KB08faZ+Q9DtJBxLGk7h4RJCNm4J4/dwrwPt3cOMaVSZvgwOOMXwPeMy/CLgH3IG/3o8/RGu4927expXL1xAPpuHzJRAJ5ODTBjC2bQytYAOzgRnMhBu4uHQOJBZEGibuCROSpghmEg2u9iVCBQhHFSARVqcxwM1uudqGg0vHsdQ4gP7eSUwX5uDW+eHV+BhkXAoWuZG+WVhC1ZaGW2jmgFOPa1B05XBu+QwzB0Z7xKxT6RI7MB2qoxCsMlfPNGqCrEuGvDkDw14FRh7uQ9KVh3rSDL8ygKOVI9j2f25B7yO9IF5bypFDUZvEmrcJ76QTtI4rxxrsmLo0dxQRb54l1kvRGVBRpZVeRMySQjXSwEpuFcNPDGEtsYS8MY20PgHzqAF9j+xH3BACqT5TcNklDlYuo2puOTSNqD0BybCkTc9572a7cHLtOq789Ke4de3qFxnuE6XOf11Yyl9zwDHc6P1b+J9/+48Y7R6BeI+A5efyriwXM8Z3T8A95WQmN0G4guYIs61JNo5K4nRVP9s8Ds+YGVGln9dwhCghxSrBtmGE7HE08vMsulPxFOGRu9g7jooqsj0TMPcpQLIK1lE1+h7dw1ZS1PdSjWlRSzVhEll4/TaTWWDOnaRHjnpoBkNPjULRq0TNX2Pi6/hXerhUT6RWryUKaa8M8v1SzEYacEid8FljyAZKCEu9MHTJWTuSijQZcxJNfxWiLSMoW7OIakIYfGoAIX0YB2uHkHZkYBZaYJE62LKqkptDyJ2GXmZn+QUq7jQDZabpyMc0bIVMNsyHC+uI6EOc2Q16O5Zb6+01HLVgKMvd+fyrdt1bjfyk+19UKT8e0A/hCqFpgfd/8i52PPo0xrd0Q/BYFwuckrlhlBvFe9Hzezuh75ejnmnApLKyLuPh2hrWC0uIKHws2kPvSRijWM0sskoWNbgp8EjnPyhyQPBoL5fRn/h3TyJpS7JXm0ughW1IiZDcAfeUGUvxBjarGyC5cYKGTfVKYZc5EXPl4DFEMLJjDILtY8jaCmhGZ7GSXsRaYgEVaxak4hy3JVFPt9jRZnjXGLcEaFpKuM2oK42xHQIOxIXUPJrRBlQ9cmj3SXEyvYa0xI+mt8JFoz2P7MPITgF2fmkHis48rBI7nDo/9+sGB6YgGlaiEqky1pTwppV4HRF7AmTgSLom5KxKVdmQJ4WAP44Dy22kCd65BrzzHgfc1fcvf/xo3M+jL6aU97PXfmOfYfcchpZfu4XBXd3QjSmgGZKh75F9LCR0pLzGZoqGAQUET/WxrZNhQAL3lBFmkRZWpR1uQwAxR5I1GPW9CjgGtNBun8Sau4q6NgHzPlm7h0Z0mcIiy5ATK/vUkQtYTjeh3i3ASnyG9ScnnhmCR+Vi2stkjxhWhQuj+ybRyC6y9VPOMw31kAGi3RIkSX0rUMfIY70sZUeMa8qgJM9AmM1EpIRaeZGVmUl1uZKYQdibhk3nRdKd4fbCdHKGLbYmtgyhasviROsYvPoA+xVE6Tc585jzTEOycwLT/hIK0QqWaussVETA6v1f2QXRTgGShigLJpX8ZWjGDRjYOcqWxyFrDAlPgkWEaDZx+4Ob7fUbsTQIT/lF0eQT3HN+W6eU5Nx69QPg6nVYFXoslFs4trCJsd2jWEy0cKx8AK1AlcVQSX9xatsgZhxJhFQOaEekyAcLmOgVIuvJYbN6EAmZDxVdEoIv70ds0gXjDjEmH+6Dc9wC9bAaKU8W/V1jOHHsIqaLs1CPKNkOitxQ5b1S9G7pg3RIAb8uyCfuevMoFqY3cHD2JGqJeXbXofvN9Cp0Q0ZuQrMA7ISeWQhUJTVPGDE+IEG5OIfNQ+eY7U3iQcLeKdY+oea8TmRiGBdJPBAKhdoM0r1izmQkhU7l/oQrzb9d9rQAMZkXJHBUi9Vhk1hQNifY+ZVk2jPODCR7hBh6op+nr6TZUkq3UMm0oBRooBxW4Nnjz7IG282bH3KsyP204/j+INfbX8hw1Exvn6xMz5lU4+DZ17F44tW2yeK5N9miqnruZdQ+pOd07IP/ObbkPUej890z595AZ8z/HD2HBa0+lKr7uP3wg+ygf1mffQiks3EDePfH72Jw7wAm9o7COmVGPdtCJdEAGcyTXr5ZYsdqbYP7YiTuahUSQn4Yyp0rOioxAAAgAElEQVQChIUWKLYLMGPPI6eLQfjkKHLaFIoWkkSvYim1AtVeGTfLSaG4Ea1COyCFvFvMSliF+CyzpwuRBhNXFyuHEDClUU0sQjvpgFUZhGzUBNGQHrX8GtKxWUT8VSw3jjIqhRS4sqESZ5Sux/dzxkoHCti3vR8xX5b9BainJx9RsXCQZEzNU1a92IKF2kEIeqUg5MjEXjFIBkLcI8FKeQ27v7wLm8V1zPorLIw7tXMEot1jcAgNiChdODt/lJnlc+UVVviKO7Iwiu2s4RJ3F9mGa7xbAtW4HseoD0dnVCej3Q2UBz0hKIDvHe0/0Tl5BycVOHT2JSydeB4LJ1/AwtlX0Dz7EmbOvoj6uY8sh8l2+P7Gm6id++RRPfsGaHTeUz//TXQGy+RZXPh//upvGFVKu4RU92l77frP4Ux5v937Ozv3H3T//Xo/38ZS3gLev3wNOrke2kkdhnYN48DCcdRy85D1q9iGym+KwDBlZe0Op9yOsCkEl9QC25AcHoEGRWMM6v1SlL2ltl1VchFhcxabrbMgKyvdsB4BuRdlW4YVk4vqAIRPDcChCSDkn4ZgUIOgs4Ckt4LZ3DoOzJxELb4Ivz4JtzrKz9UzK5gc0uHpJ/oxOqTB5KgO1WQTdqULhEahgg5VBelx1l8ASd4RGNml8fKWpPIsMjtL5i1Nr+LY8mm4TVGYVX6QkaSwV8nVyayrwNhJKhZNPj3CmE9apy3F66yXebC0hL1f3gpZjxBDuwUY75dipX4YlI1JPo9Y4XFHHpIhNSxyN5waH05unMGNK3fYm/3GjVu4frPtovlgh5tOug7N56MTkM7NTsANTSiwefYFrJx4FgunnsfCuZd/ScC9htq5+xn3BikFHT3++LYdcK/ffb4dbG9w0LXOvgzlhwHXCbTO9vr1trjVR/un8/s+3LKt8K9gSv7RH/i13Hvo6jtX+AJ58/INzJQa8Dgj0CgtKMfqHGAjvRJMjeng1vix86u7Ydd4kA7k2CKY5MmL8QKOHjyOaCgL+ZQRGoUduWwLDl8O/QNylpOT92kQcmeRcGeZWeDZL0Na4mS7X8I5Hlg4yVhF9YQJNjmZeESgHNRgYuckFlKLOFjbxEb1MDLeEkvWjXVL4DJGQJklTcYeoQpP6YyjOpbOM0mscMucaIRrrEDmmLJxwBX8Ra6WkvEGSTPYFW74TDFszJ/ibJQPVVlXJWXPYvyZMazlVpA1xtHwTbPsO+lwps1hzs4pUwjmCS1PO4lpwLqdnjzLQZBv3tHWSZbVIztiqrZ+47lvthMR9Txv3QGppd3ik+ZBjjOdfJ8ccHTKcoY79wJnuLlTL2Du3CtonP3Qavjca5zl6PH9D3JQ7bio/uK2XaV89UOH1dc+ZHu/zluaUqrM7QzXCbTO9rc34Gj9dge4+uMrSEcy0BpdmF86BJfax2XvZKIOjdqNgr/E6ll9+wQcXH5LiLVAwp4IyoUZpNMVqNV2RCMlbiC7wiUYbDEYlT6szmyi1TiEiDuDgMQF8ZZB7P6/HsfEjkGmt1AzfDpcYcHYjfIaFz7I2YZkzPO2NOtfkttN2pFmnh7pUZIXAGWy6eA0DpTWsJqch23cxEgW07iBixpUyCBDD+KqhXVBZjaE5V4ktWF2tpncK8TJtQs4tnKBKUIk9ko6JUQZUvUq4Jd52MSDPpMzx7hloemXMJk1S6pfw3IkHQnm+dllDlSjdcj7Fbyf6IKRcmZgldjg0Lhw+tCZdg/uwykTiQiRVB7PlO475joBR06qHzbU71ETbq/hlDh47iUsnnwBrVMvonW+ncmmz1HWIVmEVzB75qUHGPT51z5xkOYJjc57SCi2M5ZOv/SvL+A6B/zOB4BMpEAkUUSjtYagKcrKVXZnAqFIGSFzDKvT69Ar7Qj5U1htbKAYzCGodPIVv+DPM5SJ6C0JfwFTo1rM1DfgjpcxPXsA1dQcJnsl0Bk8EEwq4NA5UYtPwyGzQNg1hsVME7PxKsi8Y7OyymskXZ8Ein0TXBnd++VtsE3qsZqbQy1UZD0T4Z7Ru+44GXuKA0+ydZTNO2jtRXZRMW2Ipc5dQ3rQawQjIzHZ4Ud7uI0w1SOHbESLgDkO3aQFw9tHoOiVswgQtRzCKj9rqhD3zSd1sKxe3BRG2ZeFXWxkb4Wgxgtpl5AZ716ZC8NbBjhDRg1hWCUWONUOnD50qh1wHBC3QTTUti4lBc393j454Cj8qOXXN6nGxrlXMHfqRTROv4rG+TdROfcmyufa2+bZVzB35sX7G6dfwtzpVz51tE69DBqd95FwUGcs/2sMOFpP8GX2NrB7+140m6sYG5UiEywh6csjHa/DoPGilpplJD/RUCKeJPZv6wU5e5ZtCQx+ZQ9S+hCEu8YxHa5idM8EI/QLkTpUBh+kCjvkg0oucJjNfqwdOIFWcR79W7tR8mYwvmsAtUABHpkZ+iE5YmoXJrcNQLRjANZhFaZ2DkHbOwX5/nH0PbYXOUcUB6aXYRKomektI2mGUT37CQQmbEgTjnJEz6X6ojXNnLqKOQ0y9yDfAafQCvF2AZbjLURNMdgVXgRNcQT1UcyE67BNWDi7bU4fxJHKQcyG6wwGqAVKmEs2YJjQIWmPs0FjwhiEcOcwRDuGWK59JTmL2XAV1OQX7hlDM1lDPV3BN55/rT2lBOmZXMPVWyQkdJ0rivcbbu0vpND6xQx3b8Ctn3+NT3qe3p1/C9Pn3kLh/Lcwff6bILnyudMvYZ6D5z62pyjgXsP8KfqeX9zOnXwVrVOv3n194fTrmD/zOmj7rzLgOgWud39yBbu27YFJZsHg7mEEnElECJTrLmKzeRwWpQsJbw4r5VVoxzSIOxPwaJwIaX2MkqemNvG/XEoPlGM6bgCvZJZYMp3cZHTjBnaUGfq93SgrwlgO1Nn0kVjV5DBKGULdL0HfY12g9ZGqR4JmuMx+AwuJthOPQ2SER2rHYqqBo41DrJpM9B9SZCZfOlO3gg0kSXuSHHBWIk22rfIIbWzESG420Sk3O+VYR/Q8dVWNaPhi0PV4NwLaIOqhGmc3MgU5Xt/k3hopPBO9aGTbEAzjBrazIksrkmQPq90ISMzQ9giR1gUQmLKi4S8gaQhjfMcgF5Y8GjtOHjyKG+9/gJs3r4MEYN+/fRVk5kEl/Pu/0Wcp2D4ecJ2CCWW4XqEW6+de55OeAq524S2Uz7+F/Plv85YQIjTdo2C5r+2pb2D29Dcw9wnb1snX0Tz1+t3X50+/gdaZN0DbpdP/Ctdw7ER39Sbee/sKIq4wRrb2M2RLLFBjalQN6R4JtD0quHUBBG1xXiO5RBZ4FU541W4cbWyyU2jJlsFxKuer/EjaUowpJNhUasqH0IQDG/lVHMys4FxsGcovdcO1S8aWUeTn7ZA6oOyXsxkGGWIQuXQhPYekJc4e2SR3YBNZWB5hs36Im9x04iesCbaDqgcr2MyuoGBOohgoMQuBDBTFO8ZgHzWg+6t7GURN1smkpGXsUWAh2eLPH587gYQ1Cf2YAc4pB6/d6oEqyyNYBAbOmlR8of8T+QgQGJsk2MnumNxbF2M11J1JaPaNIyK1YtqeRFBmh3FQjqjOh6n9AmjH5Ti2fpjRJZSVboFWcO3xmw2476B+lrLcm/c/Tn8TzU8ZjVNvgkbnPbNnvoXOWDj9KlRmD7cFOsWSzva3tmiCK0QTAa6//T5Uo1J4hRbMR2pIefMIW+KwDRgQEXsZV0k6I0SxkW4fxeiTvTx1Wom32GXHKLHBJndBv0/KnmyqIRWilhjTVoieM28vIj7pRFEZQUOfRm7cjZomgaA8wDSgqX41SJF58JkJxOw5LE8fQiFYx3R0Fk5VEJPdcjbSqMbnEDAm+DMkFEvS4qR47DWF2L/bNWXnKSBJ1hHUinCdOW8eqh4Z/AoPnj/xEvfrCLIWM0ZAqmSaIRWokklUGlqDkTYLTUVJm5MuCGQ/fKxxFFv+/VboJk1cbS3GaihHq8jZYpjz59Hy5ZBSuyHbJWDETMYYAmVkm1gHSf8ENuZX7gYcCeT96gLuF6eUH8twEyqsnHkZi+dex+z5N5E7+iJSR19sTykvfBv1c99G8/x3MXP225g+8QZqp7+FuUt/iIXn/hizF/4AjXPf4UGv18+8heqpb6J8/BsoHHkV+c1XsPj8f0b9zHcwfeKbaJz7A8xd+mM0z38P1VP03rfQuvhHPGbOfpcf02vzz/4J6HFt80XIDE789+//AB9ca7dJqKbQqSt8POgom98zPq9tAdJXuPPDd4F370DVL4JfbMPu/7AVoj1CxI0x9P3HfViLzLNvddqUQEYTRl4XRkTiREjqhGjbKL8m6pWiHm9gxlPCwMNdcEkdePbwJRbjGd0yCEOXDBOP9cMlsqPiKcE9YsLwV3tRC8wi4Shho3EKhVATGV8dB1qnUYrOI+6tYLl6DFFnERvN0yhH52CW+uHSRGEQuqEYMaAYKHP/betju5GJlLFaWmWbLI8+gGquhXObzyLlzTEsa2LPBKuHlbNNWOUOFh4a2jrAzATSYpkJVFgsiGyL+766D0GFF2NPD2Ny9ziaiVnkfUUI+9rr28lBOTfPh7f0QLJzCNYRBTL6IHwiM0v1Wcf0sAsNqATyKIdz+PrZS+2u7ocmHr/agKOga5+MdLLeG3D9Ewqsn30Zi2dfweLFN9C69Bbql76J2qW3ULnwLZRPvoHpU29i+lTn/rdQPUPj23efp6Cce+5PsPzSn2Hl5T/Hwtf/BM2Lf4j6ue+idOJNFI+/gdLxb6F29jtoXvhjfq1x/o/4ddo2LnwP1dPf5ddbl/6Ut4Wjb2LmxKtQmNz4m7/7B250d7Lbb3fAUYb7APjg//sRnBNayHrEcEtsMPWqWEGZ+GQesRsZVRjmHhW7jTa8RRxMzcMnsrJCVc6SRUETg3LPFNRCA/LxaZaXU3QL4TYHoFVZMSVQMI3HpHShlG5itn4A5EijHrejFl/C8vRxeHQJJNw1uI0p+K0FTAzqUE6uwGVIIheZ5+BTjtphV4YRNOYYiWLVeOG3RLj/Rlr+s9UVeO1RJq+K+6XMvYs5UyD6UDHdxk36dQGmEZEswkykghMzh3GwuALh9mFU3Tn0fnU3RNsFMI3oMBuewXpxDWTO0czMM4C6WVpFNlZnPRZyP5XuG0dc44Vk1xhILHfkqT54JU7UQmU45VYox2Q4d+QMx8StW21lZAq4H7/zo1/BGo6C7eMB1wk6agv0j8s+bAs8j8WzL7PpxtzFb2D61EsonniJp5TV029w5po59y3OcNMnX29nuzNvtrPc+bf4+cqpb6By8k3Q+ynjUfbLHX6Zn6OMRRmwdvrb7fee/BaKR1/jrEfvKx79BkrHXufHlCFLx97A5kt/CrXVh+///T/i+o1bjHTroN3I8+LGDVqbdm73ZDe6uHxuM9x7t7h+fPv772DosT1sULhYWEDZmIL4qREcnvlQE6RwALKtYzzFGn16AFEFUWq03D6oJVqwj9vYNcbrjOPA+gnUExUu3dcLTXjcYcSjBXa28ZM8Q58YRw5dQqWwAqc6gvnMBubzBzHZo4Zi1IKnv9INvdSHTKiJ4S45GoUD0Ew6UQi3oJtwohBoohyYhUcTY7+5hDfL0nxEBp0YlkEkUGIm02J8J2EzKcON9Ilg1Xt5HaYcVKKabsKl83CZfzZYQkDqwPhT/dD3ynCsvI7nls5x5ZPwlaTNKdwnwuHWMUaUDHWLoVW6mKu3/cvbINkvZK/vvCPD7IikKQbxXhF7CxAih/wLDi8dws33KfcAN2/fwOX33/kVtAXo2+49EdvTMQo4GhSG/YIpHDn3ApaPX8D88YtYPPsiGieeQ+nIeVROPofl576NuYvfQuvcm2hdaNtLVU68zNLlS89/F4VDz6F09AXMnHqNX1+4+BZvZ8++gfrp15A/+DxmqADy7B9g4dJ3MX/h27xdvPRdtKg4c/B5NM9+E/WTr6Ny/FUsXPwOyLqKHm+++D2oLW787T/8EDdv3eGAu3HzNt+/fZt0X34bA65T5HrnDqQ945hO1jBXWsBSZBZekQNExiSSpnyXCE13GYuZeRC0S90rZQONVKyGaHoG4XwTxZkVBJ0JyMdUsNl88PkjaBUa8KqdqCXrmCGhnXEjjAITXGIPq4FVvDUMbxEgbs5gbLcYRX8NIXMKoj4VDrROYt+WITb96N8+BtIiCWiiKPlqWEguo+QpM1+NaDKE5iDGAklE0JqOwNTj+4UY3DnCDXUydiS/bQITk+nicmkFWUcS5lEtXON6hKR2xOROyHYI4Bo3cgGoEayiYM/CI3PjYP0ICAkzvF+MsQE5HNYEBnunuPdIqmRUkIla4pD0SLFSXMXkXjFThYiEqp7U4vj6CY6ND65ew/vXPvjQH+5BG98fD7DOVKwTcBTew+MiHDv7LA6duoi1kxexfOoiFk5dxMrFF3DwJaoePo/W6efROvkcakfPo3zgFMqHTvPjlUuvcoAunHsRC2deuPu+xolLaBy7iPqxSzxVXb7wOtYuvQHaLpx5Gc0TX8fM0WdR3byI1MIRbrgvnXsVsydfwPL51xjPWT18AZX1k5DpLfgfP/ifd3HcFHA0KOBu3WpfoNo57t4Ly+c5w9FvunYbt352ne2qfLYwRIMSRkyIusSYGlJD2K/ghnCRigmBEkwSM0ipqhKvwmEMI55qwhUrQWNq2/qKeiYwXWygXplF3h2HunsSa/lFrOWXWU35cG6D9UUsgyY0ybaqR4GYNswy4VF9hMvzQztGoBjRsOQd9fBIv5JwmllrGlO7hZDvEcMjtHNfjSqY5MVmFJpY/4T4edTcfuHYi+2CyYCChWrZ/ztYBilp0RpTP6hE0RKDZUiJ46UVnCiv4kRpHU/+zpfZ04DIpaRPObRlkIHNon4FYy8VEis8zgxy6VlUs3Os5UlAb4KKUbY/d+A55DwllCMzcCg9LIJ75tB53PrgQ5gJgCvvX8W1G8S3v/8bBRYdPhqdIOt8W+fx2LgIBw4fx/rREzh46gyWjp3EyskzOPTs81g5dx6zR07gwMXncfSFV7B27hIWT57F+vlnceTrL/NYOnUONJZPn8fKmQtYPXvxY+Po11/H8qlLmD92Duvnvo6DF1/CyulnsXTyIlbPPIcTL72JzedexYELL/LjtbPP4/Czr/BzG6efxbhUgf/3r79/N+BoHcfTyjt3OOg6v+fjmfxzHHA3r17HD/7m73Dtg9t4+PcfQ8qfhUygRCnXQjZZ5+xmkbqQjVUh6JdAMihHMzuLSrLGtJzNxjHIu1WI6WIYeLwPnikHvFIrhE8PwDgggX/KhKFHd2MhXENCHUTGEEfKkERYGYFzzIGpp0eRUvqQVPpYtoFspAwjajaGXMkvwCmxsisrNZ2pt5UzRhGXe6DbJ4Z+v4R5dovRJpuGUKHD0K/i+wTpIi7b2FODDOVais3y82QyQj24oNSNurcAr9CEBHnEyZwgr4SAyMxyD3FVgGFoAYUPc+l59qojAqzfnoFgWA27LYH5uSOI+fPMJnfpQozLVApMyAfrME254NQEsDaziXxoGq9ceJ0jg6QsCEtJAfGg+a0TcDR17ATdRydo+97Q0AiKpSpypQqqcwtITVeQrFTgz2YxqlBgUCyELRRAslJGIJOCOx5FpJBDKJeBJeDDmEIGudkIeziIeLmIwmwDxVYTmXqVP+NNpCDW6iGQKWD2BRDJFxHK5nmbb8zyfXptRCKDwe2FNRCCO5ZAcrqK1HQV/SNj+Iv/9ld3A65zoaD/Pa3jPrr9tmQ4+h13gMvvfoDhoUkM7x2GTmyAyxHFbGODZQkKwWm4nXEkYtOMtKdyPxnRE8eMxHriqhjSkiAi4w70fWUvO900vHmItw/BK7MhpvczefXC3ClEtWHE/v/23gNarrM8FxYhkFxabiBZKX/uSnJDyA82lm0s26pHR0en9zant+m99977zJk5c3pX77ZcsSkBDH9IQggkBALc0BKwcZUtSzrSkY6ef73vaMvHujYkGJKsBXutT3tmz549R/vbz/d+31ueRx2EQ+aDuFXGAJHU9MPSq8FcsMROC6r6LtpTMIhUsA0bkbbE0LKtDr2726BtlSAwYoW0dgAlZ4a14MizSmAuWNMIawLMBE2U6+T4oPjgSM0g17sF1QEOams7VcxHMu2fZB2F1h2NrBfXs6cdsqYRTHnHOVOEQgwjTaNwKT0Mmrn8CnzWBCLuHJMNjSfnIR0ywG2JIeTMMGlsx/4BdNcMwaMNcaPQClUoHJo5cpPqfG3tCl7v8n7tsfqPvBIeTgFsmx9P4Tp1NbUwGAxQqVSwOayQqmQYGBvC3pp92PKOt+HDd34YPcM9sLmt0Fl1UBtUMLtMUOoUaOluxoGjKyjNTyAY88PoMMBo08MTdiNfymJudRYzi7PQmvXoG+7nvdPngsqggUQphc5iQMX+vXj3b78Xf/Lnf4ph6Si0Jh1kGgUMViO3moZ6fO2fvoFrTDkh/NW038D16/Q/2ww0wTl0Q0DxprNo8/f+e7/ecpXSEa4CLz9/HuJeCabjJVYEpdQti8aNoQ4xqLaso6mfqfAOFg9hOjQJbacSDdvq0FXfD+IRSSgCyKnDHHdbSi8hHy9hPDuD2YllrJQOMLWCtkfNSceFxCx8nhSmiqsoxWf5+ya5A9I+dTlwLvUgKQ8gKvVCL9Ki6qP7MBueQcaSwtD+fhCZ0GrpCBeUUsxQ3y6BvlsJpUiOsDXCv6Eb1HPWi2HYBLcuBEm/AcQxeerAk4jY8nBKAxhsljJYfO4MdHInq50GTVEuQl3KrqAYnoJD7UFnXS8OzR7FbHYe9Tsb4Nd6IarswFDDEBL+Ino65LBqQ3BoQiAtc7vUzZyZlHAdM4bQXtGMpdxs2YshPENvgI61tdemmK+++io/ObSW2bzRuubyZeo04JVXXuHXr52zgWtXr+Dq+mVc3yAf5VXUVe+FSa+C1aSF3aKFWi1GZeV2vO1tW3DXXX8Bu10LvVEGi0UFuXIIbrcRKs0wPvzhP8b2nXegWIzB6zfhg3/+e/D4DOjqrsXd93wIs3MZ5MZDSCb9mJrJQiYbgFI9gmDQDrG0DzabBm0dtXj727fgto/+bxgMMtidOv4dr9/C73V6Od7z3t/A93/wL/y3vnrh3A1XDwHrjZqQUSM4HgQAbr5Dr3996dIlPkD37YUXXuDXwn2+evUqW9HXW9LXf//ixYt8QDjnwoUL/J2XXnrp9SfeeEfXpMFUOP/Wk7as07riGlV9AwFbEJoRDXPhk4wuicVXfHQ3i1uQhjVRF5DzgTSwiZjHPGZlygHyCJJcE9WOUd4hZfCTZJVW7YBkTA+bwceWkSSAibtytFcBo9HLicykBx7zF3Bs+SHMZVfRWz0ACjMo6iVIyENMre6X+uCX+7GaO4S0oyxBbCTGsNg0Qmov7ANa3tP00zxmwmDrKBP+RNwZ5o5MBCd4Kui1ZmBWBiEW6eHRJRC259lTStrdhdwq81IS8LqbiH3MA9WgHhlfHlTW41W7WYixfUcDIhoPPKMGBl02Mg2HOYlGUt0JTGG0XY6oKYbF+AJM/VqoO2Usk/X5hz5dzsC6vMHP0uVLa7xGIbBsfgAEzxyBSeg0AXybO48eBGpX1i7fjO+VrcFVbFyjY+WHsql+P6wmNbSKMYT9NlRV3Iv3vWsL7rvzQ1DJ+mC3KmE1y3nvsKlgMohx24f/CO/89S0YG+nA3EwSvaJaeNxKFAt+nD41B1F3FQ4eGEepGMbqchFetw4OmxIuhxpa9RCsZhmaG/fgPe/agjvv+FO+jkY1yMdVin6YjRK4nRp86IO/j3e+cwu+/a1/4vS09StE2iiA6d+zv8qyX3QP36zRPSOwCffy3LlzIFDQRsc2t833941eC+Clz4TX1F+vDXjlbwnXfKNrsOQwDbbPPXcePT0j2LV9H+LeBGtfD+zpwNjODmTFbqw4ipwUTPR1RIUnlprgtEfLslamGFMWkHuelHLqtu7ndRNRJoz1KaEicQ2pFVTCQp6/pvsa0N08yPoCRCPeXNOL9p0dnEYmbhDDKfNguHEMrfe1wt9vh6fLBNeADYP1I1BLbKiu7ODC1b6GIey/t5YTiak6gGSzNK0ydrAEnEmEIgWEIhNQSm1IucexGFtB795+BDRRTCZXsVI6gayzCHmHhr2xRI1Oidp2cwSjPUrOsaRskznHOKr+1z1Iil3QkxJsbR9S5jAk3VIMdMi4KNamCqC5QsTOEkoVK/kmoO9RQSNSIGTw4AuPfqZMdX5j/kfrN8HI3Tq9FEAndBg9IGTVhNGWzqeHiLb1y1fKHpNbp14cp1pHe0s9HFYd3A4jqvdtx2+95+24+84PYmSgDZGAFWajFDJJDwhsBLzt930Ev/XeLbj3nr9AKGDGoQMTePvbtmA870U65cD8XAKHDxWRStpRHA/i1IlFhAIWqJWDcNoJcMNoa9mH33n/O/FHf/g+KGR98Lh00GlGMDTQyq8J5Pfe8//i/b/1TvzOB96H733322zR1q+QNXkjy/aTjr1+BiDcs1v3dL9oELt18BLAIexv/R4dF+4/3Xehb+g4bdQvm/tD+L7wPeG9sN9y/cYa7tKl62iob0fEl0AukkfIEGANuAdyBzF4bzPzUfqHbXCIbajZ3sC8+iES6WiRsgPCTSlUviwXejpGrZBVDUC8txf9VT1Yya/CpfHCrfWh6B0HxatoukV1cEFXBoOdcsiaZTC0a1B0FZm+PGKMwzXmgqlBgeiAC+p6KZOzkrVKRCbhUgeQsGUwHZsFeVM7d7SxYirlbFrHbAyYhbljqNzdgkx4islju3Z1QdFc/q2RZglbI8OAFVVb63jaOR6fA+mHE6gNcgd8+hBXQJDgJDl1iDuT8iSpTIimiRTqSPlKmEiuIuufglcXxWRoBrYRK8swz4ZK8MgdMA6rcXrlBDaIl5KWH9eB85cusqPjxXPlqYkAIGHKQh1EnaGeqIoAACAASURBVEvv7XY7vvnNb97s7PPnz3P/0ch6bV2oet681rnhxbt+FV3tTTyl7BO1412/sQV/9id/AIdVA6NOymAjkBHopGIRdu/cij/4vXdh5/bb2QLFInbMTMUZcAS8hfkk9LoBOB0ytnYOmxx+rxEzUylYTUqYDBK0NlXht3/r7fjQn/0hg9Dt0MOgG+PPhX1tdRn4NADc87GteOHFH/NajaaUa5cu4NLaeYDXb8KU8c32Px1sgiWi+7h5E6ycYBkFwAlA2nzuyy+/zG8JWJuvI1yDPrzVytExoU83X2vLuRdeZSt+7kcvY/tt9/Mazq0mFi4/CrESMpECejuGIRvRsdC8YdiIrp1tHBjX1I7BP2iFa9DM/P8JawISkYKdKeSCb7ujBrLtXZjRJkCU5QRK0m8jeoOMMghXpxbSdgXmcwewkFphEQ5DjwFzgVkExV4cjC7D3K6FtlGOqDKEqDYK07CVK6mJ8JUqGRK6OGvYkRueyoFi3nF4DBHIO1Vwil0gjkgSC5H1qlG/pxXEY5KwJmHq1DAdHpG/SmRWkKufaBIoH3QmuQC/KcL8lqT009MjQU/PGLdifg5z+UVk/RlMhIqwKwOo2tbC+Z+L6YNwSdy8xqy5Yz/LMUtaRlBzz14sFxd46n5tfQMXLq7hwjrlU94wTgAIRJs7kDpX2LZs2XJz/bF57cAPCbN/3Qg38KArAI+AuI7mpjrsrdiB9//2e3Dn1o9ApZRAr5fD47FArxHDadPC6zKy1Xvvu7egvnYnA1CY9k2V4vjobX8Eu1UGr1uD3/+9d2CiGIBKKUIy7kBH234U8zGkE0EG2+++/934vd95N0x6BXxuE7QqMYPb6zIjEnTgrjv+Ar/x61vQ1lwDlWoMFRW78fyLz/F/9dLlizxVIykv/r+x1aZ7VAbWrXvh/vy0/a0gEu7hiy+++LqpKP/mjWmmcE2yirduBK7NfXXr5z/p/Rb+vxCnyXOXUHd/NeRdYoy1DsGr98Fl8iOXnkKpuIjBfgVzLJIGHGl3z5lzSI15oW0Q4+Hp0xwOsIxaMJNewEiHhKu0S8Yk8kNujH2sla2gok/Noh9EQ/dgdAXKHSLY+y04NnUKo50KqPoN0HRqMLy3H4ZGBcYq+uEZcWLKN4XV+AqaP9YEVbMc6g41Gne1s57c8P4R6LsMyPimMZk9ANWYHR01/Wjb0Q73sANTrgIT2RLfv7RHyaQ/p6aPgerjTuYOYSa/glLhAPqax0BWT9wwys6ZmDkOty6ApZkjCAQyWFw5Dos9ALcjDPmwBmNto6ABZrRdiZSrhL131GAhsYqR2hEmny04ckiaIly+1LW/FUfnD/MSi1i7CGgEJ2qEEWF0JIsmTFncbjckEgn+7u/+Dh/4wAdu9qEwYgvfoQtcv7aBq1fWy9Zu89Ty+jr2Ve7Gr719Cz74Z38Mg1ENj9eBkdF+2B0mOJ1GyGRD2HHfHfif7/11bP3on8LjNCActLLFs1sVOLhaQirhhlTcjeHBZgbd6koOx4/OgMBo0ssQj/jR0dqA977rHfiT//X7GBnsQcDrgF4jh1Ylhdthhs2sw76KHXjfu9+Je+66nZ04ep0KH9t2N77zg+/zfbgx28b6DY+l8P7N9nTvFArFT2xGoxFyuRx9fX08SxDAJ1gtskLU6H5S2ww64Vy6+f/yL+TYeW378pe/fHOK/9rRcl++kWUTztlCQi7kqbx47gpGeyVorGxC275WmEaNGG0cRNwQ4gdH3FiuNSsFSzhQOIiUM8NTN2ndMPOJkHNB1DIEaZ8KYVMEjbftQ0riRVYegLZJwgSx9ffWQ9oqhlmkxWPjxzGyvQNznilkSaZq1Iqkt8ByUP3bu2Bv1kC8px8ZSwayDiULRObNGXTe1YTBPb2ovrcR8/nDmIqtwDDkgHHIhayzBJcsiJgpjYgpgbn4InT9egzXDWGwqhcZY4Tp1EXbGzHtyoHCEQ2372c2Zsqs6b6vFYv+aez70G7WCiAREaHim+gb5iMzoFKgwdp+rjQwj1jQdH87TENOzpTprxrieCSVJXnETlZaXUkvIGLx49MPfZIBRwaJgHZ+4wqeu/gKLl65zJ0sdAh18tve9jZ85StfAY3EtbW1DDzBI0nnkZOFRlh2tpDPa/0qT3VofUJrCtIPJ5c6td27d+IDv/t+yOVS2BxmKNUKaPUq6I0aSOVjuO++rXj3u9+Oe++9A2r1KOx2PZxOPYxGOdxuPZJJL+bmcpidzWKiFMP8Qg6Hj0xBpx+FTjeGYiGDUNCLd77jbfjDP/hdDPSL4Pe5oFRIYDRoYLeZIB4bQtW+PXjfe/8Htt9/D1xOK6SSEajVStx97zZ887vf5ek1DUQELmFPbpPN74Xjwl4AonDv3mgvgIYGMrFYfNNBReeS11IA3JuBjs771re+xd+l1wRKAi8BcGhoCE8//fTrgEe/90ZrOuFvY6cJDS/rVwCV3ICxARmUg0osZxdxNLcKd58e7Xfsx1hFD1RNYsSMEeSCRaQjJVaIkXeSVy7KIYOQJwUS85iPzbLSaVIZ4JIX4hMRN49ipG4QumYp1HWjTI1OiqIHEqto2t6KYniG12VVt1UhKg+ifWsDFj3THCTvqexF0pjEmdJpBMY8XNJD1dmqIQvUw3YMtaqg7bXCIw5C1qhkaj6S25L3aLmagEA+5cwjInZAXTuAiNiG0WoR9J1y+PrNOBFeglNk4FS2KV8Jhj49qu6oxEJ0FkdSK1xnR/FFEohs+FgtiHCWVFWtMifHEwfrJDiQPoy0JYe0McXV4iGln2sLtT1K2OUmfPqRT7E5o1H54vUNPHvxFaZAoIeGNlobEIgOHTqEZDJ5sxMXFxexuroKmv684Ua8olfWQSM2AZRARw8XdTxV3lVW7YNEJobFZoVYIYHGoOc4mNluw67K3fgf73oH7rzrNvgDLjhdFoglQzCaNNBopfAHHFg9OINsPoKllUl2/88vjiOZ9sEftKBvoA1ujx1utxM07XW5HLBarQxui8UCk8kAh8OBnTu34x3veAe2bfsYdDodjEYCtBEyhRz76urw3ad/fNPqE5hI64L2FCShPQ1Qb7SnY+x8usXbSP93odE9E2YNjz76KA9kdEwIEbwR4DZbOvr8nnvuYaARkGiQo/8rDWzT09M8A/nRj370uq6hczYvCTZ/uGXjxjDx/HPn4bT58fjZT8CpdULSPoa8LQl1/TAOBqbwybmHmBSVwEN1Zu0N/XBaIwi7U5jOLLBgx1R6HnX31bMG3JHCIS7WJJZi8lASsU/OlODKbBKap5gc1ZM17GyDacQGo8iAoNQHj8QDVaeapahsI3ZI9g3hWPwAzF16xPVxJF15jAensBhfQsVt+2GW+3Fg8gGYhlwYrZXB0G1GwpCCWmRgp4q8W8nV2mGZB9ZOJSxtUuhbx2DsVULaPMKpYAVXjjXBmWk5WsLy7FEkQuOo2tnArNKdNT2cYmaRO1mwUq91Y27pBAJ+qokroeibRd5R5PzOgn2c9etIw47CAsR/Ur1tLw7PUwEqOE+QHqCL2MAlolvYuMYPhOAIoenP5z73uZt9FIvF+D09NARK2tO5zz77LD80tCeQfeYzn8Fv/uZvQqvX4YWXXuQpGoG7rr4RWqMB/cMjGFPIoLdaIdYosXXbNvz6u34TH737DoilYxwUHxoZxNBIP1tCsXQEW++6HWqdHHqTGjanAR6/jZvDbYLRooTWoERbRys6ujoh6unD4PAQxBIZFColtDoD9EYDKvbuw/98/29j6513M+htdifEUgkMRjM8gSDa+wbx+S9/hQef7z37PL73zHN49tWLePqlV/D0y+fxwoU1PPPKq7x/7sIl/OjFl0H7Z1+5gG999we46+574PF4YDKZuOn1eg70U7BfKpViYWGB7xfd0I9//OP4/Oc/z/eWQEX38/bbb4fP54NGo2ErViwW+XNh7fbP//zPfF3BWdLZ2Ym77roLoVCIQb1161Y+n2cb/Oq1kAGB8taNp5QXz1/BpZfXoRbrkPSnWDeAJKMattVA1jKKhLHMnEWqo5V3VIKKO0daxkDBapKkMmhcEHfLEbfEWR+ublsdOhr6WFJ4oEeG1akjzNx8MLbA9XSGThV0I0YWsteMWOBVB6FqlGHClMVidBEBXQQBcxyDDaNQ1IzB3KaBrF4MrUjHyqYOTQBTgWlQ4rOi24CQJYu4ZRxD9VJoey3IWPMsMRxWh3EgtcLTO+IxoVSuhDaAtm01SBkjrP5DFqijooOrvylsQczQVEsXdSQ5/FG3t5UHlVMHH0FDVScPMpR1U1Pdic7WUWiGrGjdKeJprGXQzuIivRXdaL6nATF9EI+unIVmQP7aGo4o8ihofe0y1nCdp0ybO4UenLNnz970cP3ar/0a/vVf/5XXH1NTU/jGN76BBx54AF/96lfxqU99Ck899RS++MUvgh4UGnnbOtrx1X/8B06VorG0sroG0XQaqfFxJArjCKeziOTynOKVKpb4s3ShgGQ+j0AshkAsgmQ+i3Qhj2g6CU/IB380iEg6gngujkQ+gWgmimAiAF/UB08oBG8oCn8kjlA8hUgyg3gmj2SugFS+yHu7x49wIo3JuUVkCiVEU1k+z+b2weaPIFaYhCucgMrq5PfOSAIWbwiuaBLeWBqOcByeaIrfW31h3tP5SqMFj3/8Sb59ZFFoMKIHnx50ek2gWV5exj/8wz/wOQS2v/mbv+HXtBame01Wj2JztNFa+a/+6q9uzibomuFwGEePHuXP6ZqPPPIIMpkMv6fP3/e+9zFw6YAQcqCZCp1LVvbWbcvlV4lyG1h7fg3DLQOc2V8M5Dhjo6WmEz53DB5XFBOFJXZ4ENiI8FWyqwe9OzpYiF6jccDUq8Pwri5W0pGKFNCZvHBHskwzLu9WcB0d0R2cmT2F+ewSehoG2GupH7PBKnaiY0cH67UFCWy6CGZTy8wR6ZN40XZvK7p3d6OvZpD12vymGMwjNhbzkDUrYBtzc1zNZYqjmFxCzl/CMFFD7BvCWEUvVsPzGGoYZqfJdGqeg+M0PQxJnVC0jEHXpcCSbwKKyl6o9/bC3abEmcQqKJ9S1ipFKTrDpErESBZ3ZOFW+GDo1nNJ0kDtKFyqCBTdOrhkfqTNaRb/cI7YUHBlMO7OQDuowKGZA+W49I0p0oWNdaxhA2tXXhsFn3nmGX44qOM//elPw+VyMYio0whg9JDQ9JI6k2JyNErTa+r45557Dk8++ST+7YdP33RA0JSrprEF8XyBmz+ZgtUfhDMS41zG8flFpCenEUik4YnEEU7nuNHrQCKFTGkKgWQCwVQSoXQK4Uwa4UzyZuNj6Sx/J5TKglowmeHr+eMpUBOuG82O83H6PFWcRCxXAIEnMTENdyIHdyyDaHEGudllhPKT8MSz8GeKCKQLcNHr1Dg8yTwc4STvvYkcNFYXHnvyE697pjc/5HR/fvCDH+ATn/gEfvzjH+Mv//Iv8YUvfIEBSaB897vfffO7NHWkAYs2ATh0TwmUjz/+ON9rAjNNlWk2QRu937NnD772ta/xe/o92gTH1ua/hT8AsOXyxWv8IFx8/hLGOkdRvW0fxB0jWMgtQjOqx8rMYeSTk8jGJzGbW4K4XcKaaJLKfriGrKiubEUyOoGAxIW8NsrTRip90evdyI0vsFwTZZhQLEveMAoi8ok5kuinJOjYNIvYE/GrW+lHR1Uv1L169NYMYj6xhKX0KuaTywiZExxQTjlymI7MYTG9yueSBTQOWaDpM0Daq4Vq1ILJ5CJsEhdiqjA8/TamXj8QW2QZ4P7mEbbKS4WDmPSXmEohrgsiILVhYEcrfD162JplkOzsRHDIBpr6TnqKnG4mqu7FTHwONrET2i4tTJ06VkI1jbgwGV+BSezi8iKv3Ac35XU680yL3rK9gUVPzh46U/YA3PDgExio0RhIQBM2WqvRNIasF3UcjdKCG/vIkSP4x3/8R35ghPNpT6CjB4Y2ut7laxs4d2EN59fWsb+pBd54As5wlBOJfck0woUSXIk0nLEMP8D0sNODHc6VuNFrdyxVtizxJNyxBIPUHorAEYnAFYvBm0yCr5UrIpQtIMjgyMOXzMObyDBg6BquaBqBdJ73ZKno2r5kln+XzqW/gVp4fAbh8SlYQylYQwkEspMIZCfgz5QYcL70BLypcdgjGd57kgVobW488PAj/P+m/z894MJ94IMAA4zuG20EDAIc3U+6twLA6LO///u/x7333sv3lq4j9MnIyAi+9KUvCZfj72wGUk1NzU0LKpwkJCgI7zfvy5kmFCe9DpZV2rtjPzrruzARLLAqadNte9FxexX0jRJMmFNMqErKpdOTB5GOT7GOG/GX7L59D8iBMkIZ/GMOJlAlb6VabEJtRQvmE/OY9k1gxpFH1/0tHK+j6nAiXh1qGMX0+AE01vYiGyjBMGjGSmwZEV0UlCBMbvugg1RpVBDt6oZlwMI8kjOFg5idPMQ8mCSESFal5MhD3ixB1pXDXHoJ85lV+LVhLEQW0LNbBOugldeMAWcaTkMQFJye9mQhqmxDxBLkQaa2ogmDtIYNFlnvTbSnC+ZeE/oq+9iyTsbmMdSlglbqglEZgHzQiqS7CJlIx3VwVM5j7NWzUKOqS4aELYSnHvvMTfcb3WuCx43l883+ENYJdEAYLWmNRlsgEODpEJ0jfEbHhc6/coWmMddw7uXzWLtKjJflJKk9NfUIpDII54qIFCe5xSbn4M9NIJCfgjtJxxe5edNT8KZLiBTnEZmYgztV4HO8mQm4kjnYaXoXz8CdysOfKyBUKMGXLd5owuvX78PFWURLs/Cki/BmCohNLsCZyMIcSiI+tYjE9BL/Rmh8Fs5EHlp3BPR7yekVuJLj8Gen+O/wZSb5uD2a470nNQGtw4fTZ8uAE+7DrYCjAerMmTN8Dx977LGbThOyYu985zvZ2UQf7tu3j9dlNB2kaeRnP/tZ0PnHjx/HysoKn0d9QR5kYQpK33vPe95zc0opAI3+FsHK8Q9v+ocBR0IulDcrk+mQS5eQCWXRU93NmfjhQQvE97fB3aGFuU0JYkQmSoNsfoHXM6SwQ55Ht8KN7v0iKFul0DSKQTG40JgTLrkL5IyYik5jOlBC5Qd3gDhDSHvOoXJD0aXmtRoVskaCRdaBy3snWMFU1qmCRuEEpX9FvHkW3JC2yFD/sQaY5W74XEloVHb0tg0xqzKFKNTNEtAaSt2nxXLxEKuhEvW4sk0J57ALKXMWA81SNNYPQ6f2oL+uFz6ZDcVQnnNJ85lpVvUZ6VPwGpOoFSiBesI+jro7amGXuFg6KxGYRC69hJmJ4xgW6VC3qwNRe46nwyTiSKldWRsxkKUQtwbxyVOPlwFHsw5iul67xBnyQudRJwkPDfUPdfzmTqMH52//9m/5HLKCNI28dSPr9uraZbZwBLhza1dQ1dyKUDYPf3Yc7mQG5lAcpkgCOn8MlmgWtkSJmzU+CUusyM0aL8CWKHLzjc/BnZuEI12ELTkOe6oAV3YC3vEpBCZmYYlnYU3kuNloypcuwJkpcqPzVN4wf2aMpKAPJfi4PTXOxyKTC3ClJ2D0J+CI5RHMzzDA4pNLSM8eAIEqkJu+uSfwOeNlEBIAdU4/jp9+kAcgGoTo/gnrN+He0LrtoYce4vtFU0uamgugJItHDpBsNguyVE888QR/jVz9//Zv/8YWkWYYZPloo+tTaGFycpJ/56//+q/R1dXFnwn9Qf1G2+ZBkQ/c+GcL57huAM/98CV01HXiwNQBRO0REHXAcNMg51RSselw4zCDimJpJM/klLkQ10UwsK0F0UE7Hioex8HUMqpvr4S+QwldgxiiO+oYqBPGJNPr0VqOQEacjo/PPYiRqj6W9A1YEpxl//CRJzHcIceISIWqXS3oaByCfMjIRbCjXUrOzKc0LcWwiROdZ1OLKMZKKEYKcKpdEBKuB2r60FfZA9eYA35lgLXJacp3dP5htkhWUxzx8Bxmxg9zRk3LjhqImwfRuqMeJW8WU/4CJE2jXMS6ml5h4UaaKnpkXtalG62XIKSKwDrqQtw7iZB3AjZtCDHXOHtQm3e0cHUDlRZRE7f04/T80bKfm8zaBnDh/Ktvmq1AnSU8FMKepo20CR1Lr59//nk+RiEBgfWKLr9eFkRid3pNaxf8qRwc0TQ3shqBwgw82Ul487Owp2ZgS07DkZ6Dr7DMzZGe5WP29BQcmWnYUhOwJouwJAq8t6UKcJDVy03CTVYyPwXP+PTN5i3MQGimWBa+4iz8E3P8HfqencBLwM1NIlhcgDU2Dks0z3tDMA1jKANnqgRPdpqbPVGEOzMFV3qSz6M9fa60+XDs1AMMBGHAokGK1lbCRseF+0RrMgIE369N59D55K2kdR7dX4qBbgbm4OAgO6vomnQN4fp0/Dvf+Q7/lNA/9JkANgF8wt9C+5tOE7wK+AxeuFR2DDaSXNM85z6qh/RMyJP0ZDnjnxKSl6JzKNly8PSZoauXQLynF7YeAx6ZP8v8H4ezB+HsNWJsRzcywx5IdoqQ0ISx/65qnFh8AHnPOBydOnTe1QDzqJ1BRgIatGYjSof9O1sQ9uSQi84gZs+wsEfr7k7MpJcRcmcx2qPmdRsFtKWto5iNT0JJ01NHHMVgAQvxOZbVMnSque6NREF8hjhEzWL4XePo7VRB1CTFSukY5L0KDDb0YsKXxZQvh8XQJHQdMpBeHYFuNjYHogcU1fbj0OQJdOwVYdI/xdNakj6msEA+PMteVSrNoRQzu8TBMsW9VSJ07etA8+4GnFk9iauvXMG1S+ts4Sg7hDbqIAFUNJoKnUWfCdNHoePoYfjhD3/I3xP+oQdK+D5ZOGoEurKFW0dFXTOvmcjh4EsXeGrnH5+GM1WEJzfDgHJl5+HMzDHICHz0mo4R2JzZmVvaFFy5aW7u/AysyXFulkQe5ngOBDBjNANDJM2NjjuzpZugI5DReXScXtPfIICJgOTNzSBQmGegEQjpMwFwBDJzJMdgcyQnGHCnzj7C/+fy/djAlSsUAyP/b/lenCfy3Rv34+ULRG0BrF8rWyEa+eje0n2l9RztCYxKpZI9k5vT7SjrR9gI1AS0eDz+ukGT+m5z/wn9InyP9lvoL7hy7jLWnr3EuZR1uxpYPpco7yyjVpCmNjkqZmMLyDtzTIXQv6urTB9uSYEqvimJeClzgBVuyLFBBaaiPSKMW7JIKSOQV48iMOxC3Uf2Q7x/GA6RCYY6GeYcE8i5CyBPJa2z6rY1onVXByRtcs6FzNiyyNlyiKojmPROwthv4r8n48yzsk4nUfQNmWAdMvCexBhDaj98cjfmQ9NcmUDhAGJ+JiKg2nvqYBPb2WNZ8BURtyS4uiFmiaAYGMdqfhldlV1szc1jFiyNr7Jns71GBEmvEmFXGm5TGFT2E3NnWIbKr/HzNJvoHxTtcmj7dFCIVIha4ki6M1AOqlGzpx6zpXl+AmidVe6I8sOxuTN+ptfCk0X7WwBHk04CHFk4Ahs5IGjNRtbNFs8z6JxkLdLTb9Los19sI5D9pEbAItAR2PzjczfBRsCUWtw489gTN9bCFAK/iivrF3HtOuk2lAPmVH/w/XMX8OI14JXrwLkrV/HypUucn0nnEugIaLQR+ASQEPA2g4dP+Dn8s+Xyixd5OHzpX19CV10XE/GQjtrp+bMo+EqIaONIGNNQtavYNX98/Agoi4Kmgw1312GsS4nJzCqoPEXUMIrWyl6mF5hJruBg4TiMgzb4VGEM7B/GUmwFKVMGR3LHOP/RI/FxgrFl1M5rOQoJkPWYDs6U42jaCHTdOhwbP4bZ4Cy6d3ZxiIAy/qUNEua4lDSMwjFsYf5IqvIm60uqO6QhQCSudOx06ThOTRxDxYd2QtIwwtZL1jTGn4dkHhi71Fx5TkSxxI9COaHH5k6CnEMVd1eBrHvYFuf43JmVsyDSoOr76iCqErHmgGhnCyLqAEthEYPzZGSaE6CpXGlmfBnFzBQePP0Yzr9yCeQ5JpmqtTWhFOUt9uItgKOhnR424YHbW1sGXCBV9vgR4Gj9IwDuJz3s/x0++2mAO/34E2zBLm+QTgNZrnWQVMraxlU888p5dsS0jClR0TmII098BnTXCV4vnqNiVAJYeapOswlhPS2A7y32zBt+fQsuUm4Q8OIzr8BhcEPXr2MWYqvMzZ7AiDWDcc8kTD1G9hAeLh5hwY6xhmFeI41SeY46BKIWEIu0vI4J2DOYyR/iKuj+bhUmi4cRDpWQTC2gb1AHjT4AszOJbGoRliErEpooA4jWSZTlTzE4lzaITKDE+/pdbaxMSgPAyYmT6N3Tg7wxjawxwaSyJW8B+h4Nl/2QU+dgZoWtHDEma7qUDIQTE0eZfoE+i+nDXHZDWggrljyCrVoc985gaFsrVv3TIPIgdacCI00jMA4ZmWKdtAXy5iS8gxZ2CLnaNXB36TDvK8I9ZoVLbMdyahHTkRlIO+WovrcebkMAIVcSeqUZZ449VJ7jXKd12Bquk743PyBv2C///oO/5IA7+ejjuHz9Gi6uk9UqA+46cX6eewlf/fb/YY/m7KmHcfYLX0Z17wgD7jtP/+hGBQKdX14vf/3rX+cEg1+EVdvcmVu4wJaSl5+/xF46ku9V9arRVilCw+52ZH2TyLiKGGsUgzyEToWb8xOJJnwmOouAMYa+RjHaqwfQsKcLTkMUy1MnQV68fbvbEQ5MwGaNwx8ooqdXDYc7A1+kBIsrheEBPVQiLVq3tfCaaCmxjM69IgzUj7CiTS44yVUEotpBdqqoenQ4u/QIyCJ27OrE8YljmI/OMX0DJRZTYWv7jhZmXiYAUsyPdAFIpyDvyHAtHgGSzjuQXuaYoalegrFtbei8rRrD97fD1qkBZcSQJSRgTnjGQQKOFGdMacsKPIFBK0J9FgT7LWi+uxoryXm072plp9LJudMYbZey0hBVJyR9OQx2jaCQLGH94lV2p4KIOwAAGF1JREFUmICKEK9voFxwubk7fobXv+SAO3r2YbZmVwSuEKzj2sZlvPDyOfzTd7+Hpr4xPPz5L+HQY5/BR/fUcH5meQK5Ua6Mv1H6Q1UZ5AneDDhaH/+8N17DkY1d/9EFll8qJGegV9pZbZTWb3axB1aZl4PKfnMcHbvaMVDVx8FryrygOFlft5ydGXqFCxqxDYXEPKZSS6CMEMr60A+a2Z1OLnW31APbkI3jYWlrBuoBI3besa9c22ZNwzHi4CJRx4AV8gYJBip6sRxd4orwrG+iLOtrjSMZm4bNFISqX4f2Pe2Yi85gMjSJtC3JqVpUKEtJxiXiHNnfA3JgiFvFsI9ZQZwrB3OrbL3Ia0rJ2DaFE2cWHwClr5G1IgCTthzV8VGlQc6eBin1kKDHUNMw81oSmdJcYgaqHgWoioIC/Ltu24Ocv4jPPvQF6EZN2HPXPsQ8cXz9S98oz/MIa5cv45Xnn8d1osl7q336Sw64Q2cexBVOYSYn1FVc37iM9auXcPnaVbxwaQ1nPvEUmofl6FaY8JXv//gm4NbXKcOHPJblAuBvf/vbHPwmgBHobnVO/byAt+XKuTWe2Vx77jLaK1uwMnMUs4UVkPxuxjUO/aAVbfv6mEqA9LCNI2Yoe9QoRqewY2sFyF0v7dFwgPnozGkm0CFdcJfci5AmzJXcI9XDGKkaxLgpg2nnBOKyIJw9ZgxV9jNzFxWTnpp9gCkUKDBN1d+UdR9RhXF68jRq72lA9cfqmR+zek8bZGIL5maPw2WLonlvB3pqehHSh1g8pOArYKxNjIXkAigMQU4Qig9K2iSYS87j2OQxJm2lYH1vwwBzstDUL+HNcryQqgA8ai9rFFTcXsGVD9YRM6TtUtR8rAbTkWl0VXWjt7YPxhETXEon5rMLvPZ1a328dtuzdR+6qnshqutjfXG33o2zh8+C1svXL1IqHS3khKrst9iVv+yAO/UAwezmFHHj2ho2bnGaEKSo/fjKaxUINNVYu0SV8xucJvfd734X3/ve914X+3yLPfOGX9+C89c4JeHSq9cw2i9l6aiJwARzhuTis0y+k/AUcbR0AhPBaRTo4fKksDJ5mPlMhnf34nBwEWdSRzBnK8IpMsHYooJ3wA5LtwHOQRt0nVooWxQcfKYCUyGmNVozgqIxg4wqiv5dInbMPLj4MOdLkvtfo3RBIbfD78uxZDElC1s1fg4jkBY4adHRAEAJx311/Wit7EDtvXVcZBo0hLBcOMDaAmTF4rYEV6JbxFasThxifhWX1MHTxNCIAxG5l9eBRBJLFk8+rGNqdKKNaKpsR+OOJlCQPyp2Iz7shKNRDmODBIO1vYi5EtAMG+A3hnB87jRLNWsH9Bj3F7gNtw3hxMLxcurH2gauvnKeAXdt7cKvLNxb9FIefeAhrrgg3b3ympicIATBsnPk5Q2AYEWNSBaIw4tWbmVnSblukNK9ZDIZlxZRMjiFZ2gT4ndviJyf8eAWdtmsAa++fAUBVwRtFe2ovruacxKtugC81hQXeqadedBaSi23gcpTRrtlXExKAh8TqgQCIiuc7Xr4+mzQ1EvRcmcDQjI/JtwTnH9IBaFkydqr+5AMTKCzYQiGURsk1SOIin1ouL2GK7uXMwdgU3o5BqdVurBjez3yuSVO7yIBkEx0Gha1D501/eioEvGUkgBFTdwlY+024svce3cVWxdiCTs4eQQT0SkOd5BVIwkr4lMhq0dlO4O7OtGzs50dLURNblU4MdIlZaIj+n9SpkxYF8RqdB6aulGMSwMIdRpYfovCCf2tQ1zlTlPI/sZh1vo+MnkMml4NZqIzsElMODixUh5euaryhoUjx8mvppQ/c1hAZnbjxEOPYu0qJXMTrWDZaSIA7qVXL7E9oU8IcM+ulWWYL3ASQXkKShaOauMoZYticUIgW4h9/oy4etOvbbm2Rp0PrD1zAfd/5D6Ih7Xwe1NMUzDUIoFd4cdYt4bzHCm9yiK2wa8JwGsKIRMscIyL2JT7dnehb68ITrGjTJNe24+YMw2SdbJovZgqHUBX5xiUagd6B5UQy83wBbIg4p7pxCJmYgvoquxh+gTbgBV7P7gbYWUIXqkXml49HEof0sSHqXIjHJuEyRVHceoAFiYOsWWZSsxCP2oC7SO2OBp2NTMIaW1G4Do0dZTzPklRh44R8BT9GmgkZrZkqjEjc1CS9oBp2MRa4LR+G6joZgZnquWjHFBS1DmcO8AeSVKDJetmkltBSjw0haQYXNqR4YRnKnwl7bnRxn48sHiSiuCASzfA9qsp5U8EmhCS+ElhAQLc6Uc/zmMWVbnfBBwzlpXffe5L/4QusQYSqx/PXQaePkdSz7Rt4MplsnkbPI2kdC1qQqWAEJt7U+T8jB9wLuUrz72C8/96DkriLbFF4HbGQOlWRC3n1oTRVTMElczO/JE+tR+H84c4JjWRmIFD6WGRQpfax0Q93XX9SPnHWZ7Ya4lCMqjF8vwJJGIlaNVOHDv6KHzeNOy2CKLhAgxyFyL2NKdEUdIy1bBR6YumVQmzyMCgG20Yg2h/P4baZbAYgujukSOcnGYavLgnC1mPktdVJBZCjgtiCNP0azHYMoJCoIj+piFU3b0f6kEdr+uIWm+4eYQHDYXMDIsthGx2FhaDD/WVbXBovWwtiUyW0tgoH5T4OEm/gECd8Y/DpffztNNvCSEfKXJRLv1e0pbiQUfaJOaAuKxFjLGGfjy0eOpXgPsp00cBZJv3Pw1wZOGublxjAlyWsLq+zpycFFP72jf/D9r6xFg5/RiWT38c+zsGuBaRqimYFez6VaxfKaeBUVoXpW3RRsFvIQD+M+LqTb+2hawwWTmiWKirbeXpFGVYEPMVWZSlyROcvkQFnxQzE9UPYCI2wx5ACh8E7AlOYqbKgcNLZ7AweRiLpcMIO5JwqL3orulD1pNH594uTukyDRixlFhEXB/FkexBLAXmMFI5AEuPEYcyh1AKTqOloou9nFP5VYhax9DeMIhSdhmN+7qhHjZzErNF6kJbRQf23bWfBUbSjnS5wjw+B1qnkTAjAYSUdIhpbLB+kKfLxJtJThaSK/ZSPFDhQCZWwsHVM1BpHAgmiqzKaYtmIDG7QNnuWlcIE3OHkM/Po6dzDP0dY1ANaNFZLUL19lqMdI4xmMnikRhJ633NmAtOszWkZG5J0yAeXjpdXkDwjII6XJjSvGnf/Ps++CV2mrCFe+gxXLm6jiuXL5U14whw168yeP76y1+F1ubHU1/5JlYfeBJVbX28gqKkgBeefxYgQp8bYQHhZlMoQMiV/EVMKxlwZJN/9ONz8HgiXBgaMUfRXT+E6dwqTDIP4tYstB0aqFrL5Kgky0Q0ePQwhYwRtFR2gugH7Ao3Z1lMRWc4l/BAZpVDCJZ+I5fNFG1ZUFqYqlECbZMUy/5pljMmjyXVrxFvCcXYumoHYFS4OXlZK3MwDflM/gByoSmUQjPMW1lwFxHSBDETmgZ5JjUiFc4unUXSEmeOFeK/JHkqCheEDWEOA8zR9DU0iZXsClbSSwxGbZ8WQXOE12wOUwCrq6eRn1pBKDPJQIsW52D1J9AhGmMW6dXZYzx9JJpzYqImD6VL42ZiJeuYFT6Zh2voend1MlMZCYfIWobxyPKZMuCIeZnjcNTtNA16i9svOeDOPvYkJy/fCji6qy++cgGiESVaB2XolZvw2FNfwksXyw6V62RheOpZLuKl/EhKQKa9EIsT9m+xh1739S3cXxvAqy+uway1gwQVO5sHsJA/CMOQBeZhB9wSH6daZa1ZpDQRDO7qwsCeLnTcXY+D3ikU5SE4m5Uw1I7BRqC8vx1JmQ/GFjlGKkRMPhRR+KBqlrCkL7Fh1d65n2WNtX0G5qRMWNOcR0kBbQoNtN3fBmmTFKvJVRj6jJz1T8WfFNNbKRyBzxjlejdKFO7Y3QYS3qC0LAp0E38Kkc0S2OrvroFH7mIyo0eWH0LCGMVqZplzL6lciNLAvKN2JDQhuIYsnLJG5LZt9zVhwpXHQngGBpEGlApG2t8z/hLH5yiH06twI2gIQNopYa1wOpbURnA6fxTmLi0H0KlyQtk2ikcOPFhesVMqP2U3XL/KOt+v642f5c0vOeDOPPz4jbtGAxlN1y7fsHTlsCdF237w0hq+8/wlXkK/eGGdKyvKg95VXLr46hsC7BcR9KY/dAuNsdRnLzz9MmdE1FZ3IBLIcUoVgcHcb4WqXcN8Il6xB9FRN8yNcmZWDgzZYGtWwNehQ2zIAUVFHwz1YljalJBU9mGsshfOAROIw4SUbAhocV2YH3rK4CDnhFni5HxMry7M2gFUTkPJyn27RQhJfNxmvVMcDCcSIY/SzxXdU/EFyHvUEO3tRkQbZO25zl1tsAwa0bdPhJqtVUiZ4wwseasEOpEatmEzKN2L0tKIsp2q0If3dMPUIkdk1InQsB0lXRyxESfEu7rR/Bd7MbqjE+PaKGZsOYTFLgzs7MD9/89d6Li3ia9V97H9kHdJMVw7gEPpFUTlfgzuEWHePYGUKghKH1N3iPHowbPlsMB6OWZ05fo6roDy/97i9ksOuKOnHnw94C5fxMbli/xQ0xzimZeIO6a8fKYI2Bq1yzTt3MCFl1/EZc5pLV9CKLGhd0Jo4C32zv/19S0kgLd2+RqIvUsu0TLDsqxfjT1b9yPnKULbbWAtN+KP1DcrYWxRIC0PwtOpQ04T4WnbZGoOTo2XiXe0I8ayi75dwoFhr8oLebuUMzwGq/vYooh2d+BY5gD8MjeC6hBXBxBHCZXnKNqVXBWQNKfYqqm7NOip6AFpDiQMCbjFbnaqUPKyQaTFfGiGgUxqPsQh2VvRBU2HAvYhM4ObrBN5G5vvqWfdbbJoVJXefn8zc5Z4RQaOq3VvrYNLpGcKv4Q6iOXwLPK2svxV2pLgkAFlnpDWAFlDyquk3yRmrpQ1xtycxJOS0cWQUoUg3TeA1eAMLCItNJ0SPHboIZ5Bblwl4qANrG1cwWVc/hXgfooj5ac5TY6dPlt+qHmaTlTylwHK4Nm4jkvrG7xme+aVq3iedOwpFidIMVBq3cVy4JscJAQ2qhAQ1m1CadT/hZi3eGDLhYvlUfbHz7yIXKKIo/PHQeL0EXMMLTtb0bitCc5RJ04XTiBrTHHCcMGchrVDA2OPDp1Ng+jsFsNmDWNu5gh23V+LuanDcJnDTGGQ8Rd4nUcSU45hK4PkQHIZ6i4Vuiu6mOm46MxzeIEUVicCJSbpOTxxHKv5wzg6ebJM2tNnRP++XtR8tAp5c4qpymOKAPOH+JU+DFT3wzpsgbpDyRp0pENHldpH84fZQUM1esM1g5yilbWlOH2Lpnuz9jzkVQMIjjogqxvGWN0QW6uA2oeUNQEKjhMXZ8v2JtZDOFk6xlPJnn3dzFA27h3nNaJtyIKePV0YqBDBL3ahcWsN6y4Y+zRQiqR45OhZnuOQGCONvBevX+H2c7VwN6wd7YQVIlULBJI55hKh8hziAvFlS3DEqa6syBXXm72C/91e/zTAPfjI47yGI27O8jSxjAj6/5Mw1I/OXUHpwGmcfPypm2ldl9ZoXrdxQ2Fo42YogNZsv4h122aM8hqOhtkLL17EUOsgDuWXuL5snKR5JQ6OKcm6FLDJXUz9LaofYhd+X+0QzDIX5zSOjhjQ3TKKiCMDtz4MndSBwT41YqEJJmtN28cxbspBW6/AodgB2Iad2LOtAV5LHP1V3VA0DSGhD0HcOMQPc8adQ9yRhnHMyqlSJAhJsa3FxDyLNu7447sxXNmJvCXO4hkJ5zgCxgQOlk7CPOqGtt+K9t29TJnXtK0dqg4tluKr6CU+TBJv1AaZf2U2NgtNtxrziQWETVEOohNXJnkb1d1yNN9bh+EqEepv34sHJ46z1ZR1yDGfW4FR5cLi1DEsFg5jMUftILLuAscSqY6QOFWad7Ug4Uoi4ori0Qcf52kOgYG6m0okyUf2cwEcOTxvgI32mwG3vXI/ksVpRMdLTMpDzFjWSBKBfAnkiSWKg//KRnVuQtsMdqqBEwpTqQCV6t98+VkQAKkSnL6jsnhx7PhpbFy9BuJ0IcxRjI3WbRTy/M6L67i/oRfe/Dzi04cgt3jx0lqZ74XY0i5der3Ax2Zg/KJeM+DWL2/gue8/i7r7q+AcNULXIWFFUq/MwRrZpLeWChbR3TLMAobKETNnnyxMHIPZEAYJGhYj86B1mEMZAHkUraYoZGIbBjoU0PQYIa0cw5nkMaz4l5jDUTxixdTEIcxFpzBU2Yb+fR0cryKLQUnBQ21itFR1QTNsRNKTg0vpRntFKzxSO0qeDLLGAKpvr2BGL48hAXm/Ge3VQ/DrkyhFiPHrKI6UzkDVbUTEkMaEf4Y9oLOJeZTCk6ACU8qZJPEOKoA1yuzIhEuYH1+B3xSGpIPiaDosBScRkTjRdmctT1fHWsQY6pAgHChApXSiubofo11aBK1pWOU+HJo+CeWADmnfOObHl6CRGKFV6HHk4AlcWS9bNwIcPRQ/F8AR2N4AcAKwd1RUMY0dWTliyyLgOWJJZsgiMh8i7HFzK/0X7EubwD4JNxXIZqa4QLZMr0DHpuAgq5yfhX98hoHmzZXpFtQ2Dx5++NGbgw1ZNbqvBKMfXgC+8M8/gju3iEe/+HUce+Ip3F/dzJ+/8MoFjt0J4iC/KHC90XXLgFu7jlefPY/euk72qAVldpbeJV1tSgTWic3oah6C352CVmZDNjKJ6fQyhw3GhvRIRkug+jmfNsDpW9oxM4LeHFoaB+G3JTkJumDIIquMQlojhqJbg4X502hpHoC4bRhhhR0riRkoOsb49yTdchZEJMmoHVv3YrRbDmW/BhaxGfJ2MWI6Hyy9ChZhVPbpYZB7WDaKHvrV4nEs5Y8g55lCe0UPZiKLzOJMQo4LyUWkXVkGNCUpN2xv5KwZql8zSmxcxW1Wu6AY0cNnDCHnzSOo8rEXU1Y/wus3spANu1uhVzhYR662ogsGmQ8t1f3Yf38Lyw6rR4wY7pQyA5hyVAeNXMeAo8p+AQiU4V7Ocn+jbvkPHPspgNtTVQt3OMZEq0SsGsyMM+BC42UmLk96HOVW/C/Y02/eaKmJMrNXusSDABXJ0tSXiISYhyU3jeD4NFes+4lLJVlk4tiHH3745lSSAEeDGFm3l68D33zuEvaLpIiUVkGsYMMqA39edhQKN+4/cK9/DqduWbu8gbULV3Hx+QvwaOww9qnYgsibR1Hyj2PXHRUY7pRgz321HOAe7lHw2kw7YuKHipROSZqYpk82sQ0Uw9t5RwWHF0j9NOrJYiV/AAlVCHUfqmBF0/3b6mB3JSGVmzHSOgifzIJVcrzIrRxQHmgbLX9v9jgH0hXDBgbAUOswSqEiDL1K9FQ0o31XI2q2N8JpCKO3aRSSHg1bWcrZJMYvkrOisAGtRak6gJihKctfVN2NtDeDnhoRCp48Hll6GEFDGE2VHazcOtwrR2djP7KhIic/jzWVa+OoZCdlT4N0u8dECvjsSdhNMcyWTqCraQyttYO4745KVuQJ2uJo3d+BRCCLmD+Ojz/8JKNNmO4RxTk1ev+WNrrAm1g4egC7+oaYnDWUzPNaLpYvMU8ksR37MnkEcoVyyxJDVoGnnf9p++wEgrkSt1B+mglgaU/8lAJPJb0nQtjYxDxiE7PMVxkpTCOYm4LB6cOpEyfZK7l28RJIKm/zlFLIn5w//hCX6bD1u3INFy6T++Qqrl6jPd28/7ytvIaj37wMnFk6julQAY8unUHekeD8P1qDHJg7isPLp3F49QEsTB3CQmEVB0qHsVI8iDMHzyITyGAhNYOcPY6DuWV+mBemDuDB0x/H8vQRzpifdhdY4OMTB59Ayp/HwZOP4fQjn8YDBx/AYnISy9l5LGRmcWLxDNLhIo6uPIgnHv08Hjz1CZTGl7E4eQgnl0/j+MwxnF0+jXFPAp994FM4tXoWn3z481goHMDffuarmE7M49DkMSxll/HJ45/EcmoeC/EZTEVKODyxisXsHObTM3jwwAP4/COfxcniUZzIHcJyZhkknXziyCNYWTqJk8cfw6ef/CJfn2gVpsJTeHD+DE5OHceRiSOcm3lo9gROHf8kHnnor3D8yBM4euhxhP3jeOKhz+Hv/79vlO/b3DHMTczjc5946iYwqK6RFudvGWz0nNBFNrdNbwlwf/LnH8aOfdXYWVWD+yqrcH9lDbbt3Y97K6uxdcce3FNRhXsqKv+L9lX8d9Dfcm9lLe7bV4P79tXx/v6qetxfRcfq+G/bUd2InTUN2La3Btv31/H+zz9yB86ePkVqJmUrt4lagogMnn11A8/d8E6+fAX47tPPsjOpPJUkO0ftPxdw/z+xfqdspKc5NgAAAABJRU5ErkJggg==" } }, "cell_type": "markdown", "metadata": {}, "source": [ "The fit of the Tarso model (two exponential response functions) is similar to the fit of the Gamma response function with a ThresholdTransform (a damping transformation above a threshold).\n", "It is possible to interpret the TarsoModel as a physical model. In this model, there are two discharges with different resistances, where the second discharge is not always active. This model can be visualized by the image below (taken from https://edepot.wur.nl/406715).\n", "\n", "![image.png](attachment:image.png)\n", "\n", "In this model d1 and c1 are equal to our parameters d1 and A1, d2 and c2 are equal to our parameters d0 and A0. We can then calculate the water balance and plot it with the code below. In this plot, all the in-fluxes (mainly precipitation) are positive, and all the out-fluxes (mainly evaporation) are negative. An exception is the storage term, to make sure the positive an negative balance terms level out. An increase in storage has a negative sign, and a decrease in storage has a positive sign." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# calculate the water balance\n", "sim = ml.simulate()\n", "P = prec[sim.index[0] :]\n", "E = -evap[sim.index[0] :]\n", "p = ml.get_parameters(\"recharge\")\n", "Q0 = -(sim - p[2]) / p[0]\n", "Q1 = -(sim - p[5]) / p[3]\n", "Q1[sim < p[5]] = 0.0\n", "# calculate storage\n", "S = -(P + E + Q0 + Q1)\n", "# combine these Series in a DataFrame\n", "df = pd.DataFrame({\"P\": P, \"E\": E, \"Q0\": Q0, \"Q1\": Q1, \"S\": S}) * 1000\n", "# resample the balance to monthly values, to make the graph more readable\n", "df = df.resample(\"M\").mean()\n", "# and set the index to the middle of the month\n", "df.index = df.index - (df.index - (df.index - pd.offsets.MonthBegin())) / 2\n", "\n", "# make a new figure\n", "f, ax = plt.subplots(nrows=2, sharex=True, figsize=(14, 8))\n", "\n", "# plot heads in the upper graph\n", "ax[0].set_ylabel(\"Groundwater head (m to MSL)\")\n", "sim.plot(ax=ax[0], x_compat=True)\n", "ml.observations().plot(\n", " ax=ax[0], marker=\".\", color=\"k\", x_compat=True, markersize=2, linestyle=\"none\"\n", ")\n", "ax[0].axhline(p[2], linestyle=\"--\", color=\"C2\")\n", "ax[0].axhline(p[5], linestyle=\"--\", color=\"C3\")\n", "\n", "# plot discharges in the lower graph\n", "ax[1].set_ylabel(\"Monthly averaged flow rate (mm/d)\")\n", "color = [\"C0\", \"C1\", \"C2\", \"C3\", \"C4\"]\n", "df_up = df.where(df > 0, np.nan)\n", "df_down = df.where(df < 0, np.nan)\n", "df_up.plot.area(ax=ax[1], x_compat=True, color=color, linewidth=0)\n", "df_down.plot.area(ax=ax[1], x_compat=True, color=color, linewidth=0, legend=False)\n", "ax[1].axhline(0.0, linestyle=\"--\", color=\"k\")\n", "\n", "# set some stuff for both axes\n", "for iax in ax:\n", " iax.autoscale(tight=True)\n", " iax.minorticks_off()\n", " iax.grid(True)\n", "\n", "# and remove white space\n", "f.tight_layout(pad=0.0)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.3" }, "vscode": { "interpreter": { "hash": "29475f8be425919747d373d827cb41e481e140756dd3c75aa328bf3399a0138e" } } }, "nbformat": 4, "nbformat_minor": 4 }