The default behavior for adding and solving with noisemodels has changed from Pastas 1.5. Find more information here


bic(obs=None, sim=None, res=None, missing='drop', nparam=1)[source]#

Compute the Bayesian Information Criterium (BIC).

  • obs (pandas.Series, optional) – Series with the observed values.

  • sim (pandas.Series, optional) – The Series with the simulated values.

  • res (pandas.Series, optional) – The Series with the residual values. If time series for the residuals are provided, the sim and obs arguments are ignored. Note that the residuals must be computed as obs - sim here.

  • nparam (int, optional) – number of calibrated parameters.

  • missing (str, optional) – string with the rule to deal with missing values. Only “drop” is supported now.

Return type



The Bayesian Information Criterium (BIC) [Akaike, 1979] is computed as follows:

\[\text{BIC} = -2 log(L) + n_{param} * log(N)\]

where \(n_{param}\) is the number of calibration parameters.