The default behavior for adding and solving with noisemodels has changed from Pastas 1.5. Find more information here

StepModel#

class StepModel(tstart, name, rfunc=None, up=None)[source]#

Stressmodel that simulates a step trend.

Parameters
  • tstart (str or Timestamp) – String with the start date of the step, e.g. ‘2018-01-01’. This value is fixed by default. Use ml.set_parameter(“step_tstart”, vary=True) to vary the start time of the step trend.

  • name (str) – String with the name of the stressmodel.

  • rfunc (pastas.rfunc instance) – Pastas response function used to simulate the effect of the step. Default is ps.rfunc.One(), an instant effect.

  • up (bool, optional) – Force a direction of the step. Default is None.

Notes

The step trend is calculated as follows. First, a binary series is created, with zero values before tstart, and ones after the start. This series is convolved with the block response to simulate a step trend.

Attributes#

nparam

Methods#

__init__

get_nsplit

Determine in how many time series the contribution can be split.

get_parameters

Get parameters and return as array.

get_settings

Method to obtain the settings of the stresses.

get_stress

Returns the stress(es) of the time series object as a pandas DataFrame.

set_init_parameters

Set the initial parameters (back) to their default values.

simulate

to_dict

Method to export the StepModel object.

update_stress

Method to update the settings of the all stresses in the stress model.