Changing response functions#

R.A. Collenteur, University of Graz, 2021

In this notebook the new ChangeModel is tested, based on the work by Obergfjell et al. (2019). The main idea is to apply different response functions for two different periods. As an example we look at the the groundwater levels measured near the river the Mur in Austria, where a dam was recently built.

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

import pastas as ps

ps.set_log_level("ERROR")
ps.show_versions()
Pastas version: 1.8.0b
Python version: 3.11.10
NumPy version: 2.0.2
Pandas version: 2.2.3
SciPy version: 1.15.0
Matplotlib version: 3.10.0
Numba version: 0.60.0
DeprecationWarning: As of Pastas 1.5, no noisemodel is added to the pastas Model class by default anymore. To solve your model using a noisemodel, you have to explicitly add a noisemodel to your model before solving. For more information, and how to adapt your code, please see this issue on GitHub: https://github.com/pastas/pastas/issues/735

1. Load the data#

prec = pd.read_csv("data_step/prec.csv", index_col=0, parse_dates=True).squeeze()
evap = pd.read_csv("data_step/evap.csv", index_col=0, parse_dates=True).squeeze()
head = pd.read_csv("data_step/head.csv", index_col=0, parse_dates=True).squeeze()
river = pd.read_csv("data_step/river.csv", index_col=0, parse_dates=True).squeeze()
river -= river.min()

axes = ps.plots.series(
    head=head,
    stresses=[prec, evap, river],
    tmin="2000",
    labels=["Head\n[m]", "Prec\n[mm/d]", "Evap\n[mm/d]", "River [m3/d]"],
)
../_images/0c14019b3017c408d24af8cab1f67c3769c1ae357e316ace90bc31f9e59933c4.png

2. The weighting factor#

The stress is convolved two times with different response functions. Then, a weighting function is used to add the two contributions together and compute the final contribution.

npoints = 100

tchange = 50 / npoints
t = np.linspace(0, 1, npoints)
color = plt.cm.viridis(np.linspace(0, 1, 10))

for beta, c in zip(np.linspace(-1, 1, 10), color):
    beta1 = beta * npoints
    omega = 1 / (np.exp(beta1 * (t - tchange)) + 1)
    plt.plot(omega, color=c, label="$beta$={:.2f}".format(beta))

plt.ylabel("$\omega$ [-]")
plt.xlabel("Time [t]")
plt.legend()
<matplotlib.legend.Legend at 0x7f88d15a9310>
../_images/bc15d708f037e00d65db00ad3128114a1e6b8c51d3713b2effa6b1071dfb069f.png

3. Make a model#

We now make two models:

  • one model where we assume the response of the heads to the river level remains the same

  • and one model where the response to the river levels changes.

# Normal Model
ml = ps.Model(head, name="linear")
ml.add_noisemodel(ps.ArNoiseModel())

sm = ps.StressModel(river, ps.Exponential(), name="test")
step = ps.StepModel("2012-01-01", rfunc=ps.One(), name="step")

ml.add_stressmodel([sm, step])
ml.solve(report=False, tmin="2004", tmax="2017-12-31")
ml.plots.results(figsize=(10, 6))

# ChangeModel
ml2 = ps.Model(head, name="linear")
ml2.add_noisemodel(ps.ArNoiseModel())

cm = ps.ChangeModel(
    river,
    ps.Exponential(),
    ps.Exponential(),
    name="test",
    tchange="2012-01-01",
)

ml2.add_stressmodel([cm, step])
ml2.solve(report=False, tmin="2004", tmax="2017-12-31")
ml2.plots.results(figsize=(10, 6));
overflow encountered in exp
overflow encountered in expoverflow encountered in exp
../_images/ce7f3bcc715b69429205a91e9753c6b53d65c6768fc8eafed94398fa7fbb2bad.png ../_images/8a6c4d15a7f4bd6734161e1ebc1ed1dd9cd53c24d890b1330387fa61b104f306.png

The second model shows a better fit, but also the step trend changed.

print("RMSE for the first model:", ml.stats.rmse().round(2))
print("RMSE for the second model:", ml2.stats.rmse().round(2))
RMSE for the first model: 0.17
RMSE for the second model: 0.13
overflow encountered in exp
ml2.parameters
initial pmin pmax vary name dist stderr optimal
test_1_A 1.00000 1.000000e-05 100.0 True test uniform 2.034171e-02 0.881948
test_1_a 10.00000 1.000000e-02 1000.0 True test uniform 9.510809e-02 1.272085
test_2_A 1.00000 1.000000e-05 100.0 True test uniform 2.514095e-02 0.428229
test_2_a 10.00000 1.000000e-02 1000.0 True test uniform 2.221486e-01 1.930609
test_beta 0.00000 -inf inf True test uniform 2.323056e-15 105331.511316
test_tchange 734503.00000 6.124110e+05 825914.0 False test uniform NaN 734503.000000
step_d 1.00000 NaN NaN True step uniform 3.788234e-02 1.130024
step_tstart 734503.00000 6.124110e+05 825914.0 False step uniform NaN 734503.000000
constant_d 330.18797 NaN NaN True constant uniform 2.265325e-02 329.256815
noise_alpha 7.00000 1.000000e-05 5000.0 True noise uniform 2.964742e+00 24.476267

4. Compare the response functions#

We can also look at the response to the river before and after,

cm_rf1 = cm.rfunc1.step(
    p=ml2.parameters.loc[["test_1_A", "test_1_a"], "optimal"].values
)
cm_rf2 = cm.rfunc2.step(
    p=ml2.parameters.loc[["test_2_A", "test_2_a"], "optimal"].values
)

plt.plot(np.arange(1, len(cm_rf1) + 1), cm_rf1)
plt.plot(np.arange(1, len(cm_rf2) + 1), cm_rf2)

plt.legend(["Before", "After"]);
../_images/89d57774c69f67b5eba01e1cafcdbdffb3c456136c6584499c329ab1e863f077.png

5. Another way#

We can also add the stress twice, saving one parameter that needs to be estimated.

ml3 = ps.Model(head, name="linear")
ml3.add_noisemodel(ps.ArNoiseModel())

river1 = river.copy()
river1.loc["2012":] = 0

river2 = river.copy()
river2.loc[:"2011"] = 0

r1 = ps.StressModel(river1, rfunc=ps.Exponential(), name="river")
r2 = ps.StressModel(river2, rfunc=ps.Exponential(), name="river2")
step = ps.StepModel("2012-01-01", rfunc=ps.One(), name="step")

ml3.add_stressmodel([r1, r2, step])
ml3.solve(report=False, tmin="2004", tmax="2017-12-31")
ml3.plots.results(figsize=(10, 6));
../_images/0d2ab4272729257f5b4b96cd74063a3540d7c2ae9828e34185f1aed7fe308f0f.png

How do the results compare?#

# change model
cm_rf1 = cm.rfunc1.step(
    p=ml2.parameters.loc[["test_1_A", "test_1_a"], "optimal"].values
)
cm_rf2 = cm.rfunc2.step(
    p=ml2.parameters.loc[["test_2_A", "test_2_a"], "optimal"].values
)
plt.plot(np.arange(1, len(cm_rf1) + 1), cm_rf1)
plt.plot(np.arange(1, len(cm_rf2) + 1), cm_rf2)

# 2 stressmodels
ml3.get_step_response("river").plot()
ml3.get_step_response("river2").plot()

plt.legend(
    [
        "Before (ChangeModel)",
        "After (ChangeModel)",
        "Before (method 2)",
        "After (method 2)",
    ]
)
<matplotlib.legend.Legend at 0x7f88d040ac10>
../_images/fc72167ae20ca1d39fc74f4df1cee05b46b4539a6851c4378f609d1013ce254a.png

References#

Obergfell, C., Bakker, M. and Maas, K. (2019), Identification and Explanation of a Change in the Groundwater Regime using Time Series Analysis. Groundwater, 57: 886-894. https://doi.org/10.1111/gwat.12891